{"title":"构造演算的类型化闭包转换","authors":"W. J. Bowman, Amal J. Ahmed","doi":"10.1145/3192366.3192372","DOIUrl":null,"url":null,"abstract":"Dependently typed languages such as Coq are used to specify and verify the full functional correctness of source programs. Type-preserving compilation can be used to preserve these specifications and proofs of correctness through compilation into the generated target-language programs. Unfortunately, type-preserving compilation of dependent types is hard. In essence, the problem is that dependent type systems are designed around high-level compositional abstractions to decide type checking, but compilation interferes with the type-system rules for reasoning about run-time terms. We develop a type-preserving closure-conversion translation from the Calculus of Constructions (CC) with strong dependent pairs (Σ types)—a subset of the core language of Coq—to a type-safe, dependently typed compiler intermediate language named CC-CC. The central challenge in this work is how to translate the source type-system rules for reasoning about functions into target type-system rules for reasoning about closures. To justify these rules, we prove soundness of CC-CC by giving a model in CC. In addition to type preservation, we prove correctness of separate compilation.","PeriodicalId":20583,"journal":{"name":"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Typed closure conversion for the calculus of constructions\",\"authors\":\"W. J. Bowman, Amal J. Ahmed\",\"doi\":\"10.1145/3192366.3192372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dependently typed languages such as Coq are used to specify and verify the full functional correctness of source programs. Type-preserving compilation can be used to preserve these specifications and proofs of correctness through compilation into the generated target-language programs. Unfortunately, type-preserving compilation of dependent types is hard. In essence, the problem is that dependent type systems are designed around high-level compositional abstractions to decide type checking, but compilation interferes with the type-system rules for reasoning about run-time terms. We develop a type-preserving closure-conversion translation from the Calculus of Constructions (CC) with strong dependent pairs (Σ types)—a subset of the core language of Coq—to a type-safe, dependently typed compiler intermediate language named CC-CC. The central challenge in this work is how to translate the source type-system rules for reasoning about functions into target type-system rules for reasoning about closures. To justify these rules, we prove soundness of CC-CC by giving a model in CC. In addition to type preservation, we prove correctness of separate compilation.\",\"PeriodicalId\":20583,\"journal\":{\"name\":\"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3192366.3192372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3192366.3192372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Typed closure conversion for the calculus of constructions
Dependently typed languages such as Coq are used to specify and verify the full functional correctness of source programs. Type-preserving compilation can be used to preserve these specifications and proofs of correctness through compilation into the generated target-language programs. Unfortunately, type-preserving compilation of dependent types is hard. In essence, the problem is that dependent type systems are designed around high-level compositional abstractions to decide type checking, but compilation interferes with the type-system rules for reasoning about run-time terms. We develop a type-preserving closure-conversion translation from the Calculus of Constructions (CC) with strong dependent pairs (Σ types)—a subset of the core language of Coq—to a type-safe, dependently typed compiler intermediate language named CC-CC. The central challenge in this work is how to translate the source type-system rules for reasoning about functions into target type-system rules for reasoning about closures. To justify these rules, we prove soundness of CC-CC by giving a model in CC. In addition to type preservation, we prove correctness of separate compilation.