生物大分子与合成大分子在湍流中减阻的实验研究:比较研究

Q4 Chemical Engineering
Behrouz Raei, S. Peyghambarzadeh
{"title":"生物大分子与合成大分子在湍流中减阻的实验研究:比较研究","authors":"Behrouz Raei, S. Peyghambarzadeh","doi":"10.22059/JCHPE.2021.307767.1323","DOIUrl":null,"url":null,"abstract":"It was shown that the concept of drag reducing in the pipe flow with the aid of macromolecules is of great importance in practical engineering applications. In this work, the drag reducing the performance of three biological macromolecules including guar gum (GG), xanthan gum (XG), and carboxymethyl cellulose (CMC) was compared with three synthetic macromolecules including polyethylene oxide (PEO), polyacrylamide (PAM), and polyacrylic acid (PAA). Results showed that all the macromolecules enhanced the DR% except for GG. DR% for almost all of the macromolecules deteriorated with increasing fluid flow rate. On the other hand, DR% enhanced with increasing the pipe diameter for the synthetic polymers but this effect is not obvious for biological polymeric solutions. Maximum DR was 44%, which occur at 1000 ppm concentration of XG at 30 °C and flow rate of 6 l/min and diameter ½ inch. Finally, a new correlation was developed for the prediction of friction coefficient based on the Prandtl-Karman relation with the newly adjusted slope which is a linear function of polymer concentration. This correlation was in excellent agreement with the experimental data.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental Investigation of Drag Reduction in Turbulent Flow Using Biological and Synthetic Macromolecules: A Comparative Study\",\"authors\":\"Behrouz Raei, S. Peyghambarzadeh\",\"doi\":\"10.22059/JCHPE.2021.307767.1323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It was shown that the concept of drag reducing in the pipe flow with the aid of macromolecules is of great importance in practical engineering applications. In this work, the drag reducing the performance of three biological macromolecules including guar gum (GG), xanthan gum (XG), and carboxymethyl cellulose (CMC) was compared with three synthetic macromolecules including polyethylene oxide (PEO), polyacrylamide (PAM), and polyacrylic acid (PAA). Results showed that all the macromolecules enhanced the DR% except for GG. DR% for almost all of the macromolecules deteriorated with increasing fluid flow rate. On the other hand, DR% enhanced with increasing the pipe diameter for the synthetic polymers but this effect is not obvious for biological polymeric solutions. Maximum DR was 44%, which occur at 1000 ppm concentration of XG at 30 °C and flow rate of 6 l/min and diameter ½ inch. Finally, a new correlation was developed for the prediction of friction coefficient based on the Prandtl-Karman relation with the newly adjusted slope which is a linear function of polymer concentration. This correlation was in excellent agreement with the experimental data.\",\"PeriodicalId\":15333,\"journal\":{\"name\":\"Journal of Chemical and Petroleum Engineering\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical and Petroleum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/JCHPE.2021.307767.1323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCHPE.2021.307767.1323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 2

摘要

结果表明,利用大分子对管道流动进行减阻的概念在实际工程应用中具有重要意义。本文比较了瓜尔胶(GG)、黄原胶(XG)和羧甲基纤维素(CMC)三种生物大分子与聚氧聚乙烯(PEO)、聚丙烯酰胺(PAM)和聚丙烯酸(PAA)三种合成大分子的减阻性能。结果表明,除GG外,所有大分子均能提高DR%,几乎所有大分子的DR%都随流速的增加而降低。另一方面,合成聚合物的DR%随管径的增加而增加,但对生物聚合物溶液的影响不明显。当XG浓度为1000 ppm,温度为30°C,流速为6 l/min,直径为1 / 2英寸时,最大DR为44%。最后,在Prandtl-Karman关系的基础上,建立了一个新的预测摩擦系数的关系,该关系与新调整的斜率是聚合物浓度的线性函数。这种相关性与实验数据非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation of Drag Reduction in Turbulent Flow Using Biological and Synthetic Macromolecules: A Comparative Study
It was shown that the concept of drag reducing in the pipe flow with the aid of macromolecules is of great importance in practical engineering applications. In this work, the drag reducing the performance of three biological macromolecules including guar gum (GG), xanthan gum (XG), and carboxymethyl cellulose (CMC) was compared with three synthetic macromolecules including polyethylene oxide (PEO), polyacrylamide (PAM), and polyacrylic acid (PAA). Results showed that all the macromolecules enhanced the DR% except for GG. DR% for almost all of the macromolecules deteriorated with increasing fluid flow rate. On the other hand, DR% enhanced with increasing the pipe diameter for the synthetic polymers but this effect is not obvious for biological polymeric solutions. Maximum DR was 44%, which occur at 1000 ppm concentration of XG at 30 °C and flow rate of 6 l/min and diameter ½ inch. Finally, a new correlation was developed for the prediction of friction coefficient based on the Prandtl-Karman relation with the newly adjusted slope which is a linear function of polymer concentration. This correlation was in excellent agreement with the experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信