寻常性痤疮病例中痤疮病变、疤痕与正常皮肤的鉴别

R. Ramli, A. Malik, A. Hani, F. B. Yap
{"title":"寻常性痤疮病例中痤疮病变、疤痕与正常皮肤的鉴别","authors":"R. Ramli, A. Malik, A. Hani, F. B. Yap","doi":"10.1109/NATPC.2011.6136340","DOIUrl":null,"url":null,"abstract":"Acne affects 85% of adolescents at some time during their lives. There are various causes for acne including genetic, hormonal, sebaceous activity, bacteria, climate, chemical and psychological. Till now, dermatologists use manual methods such as direct visual assessment and ordinary flash photography to assess the acne. These methods are very time consuming and tedious. To address these issues, researchers in recent years have proposed computational imaging methods for aiding in the acne diagnosis. This paper proposes an algorithm to identify acne lesions, scars and normal skin features from photographs taken by Digital Single-Lens Reflex (DSLR) cameras. The images are converted from RGB to CIELAB color space, thresholded to three clusters and segmented using minimum Euclidean distance. The segmentation results from randomly selected images show sensitivity and specificity of greater than 80%.","PeriodicalId":6411,"journal":{"name":"2011 National Postgraduate Conference","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Identification of acne lesions, scars and normal skin for acne vulgaris cases\",\"authors\":\"R. Ramli, A. Malik, A. Hani, F. B. Yap\",\"doi\":\"10.1109/NATPC.2011.6136340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acne affects 85% of adolescents at some time during their lives. There are various causes for acne including genetic, hormonal, sebaceous activity, bacteria, climate, chemical and psychological. Till now, dermatologists use manual methods such as direct visual assessment and ordinary flash photography to assess the acne. These methods are very time consuming and tedious. To address these issues, researchers in recent years have proposed computational imaging methods for aiding in the acne diagnosis. This paper proposes an algorithm to identify acne lesions, scars and normal skin features from photographs taken by Digital Single-Lens Reflex (DSLR) cameras. The images are converted from RGB to CIELAB color space, thresholded to three clusters and segmented using minimum Euclidean distance. The segmentation results from randomly selected images show sensitivity and specificity of greater than 80%.\",\"PeriodicalId\":6411,\"journal\":{\"name\":\"2011 National Postgraduate Conference\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 National Postgraduate Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NATPC.2011.6136340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 National Postgraduate Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NATPC.2011.6136340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

痤疮影响85%的青少年在他们一生中的某个时候。痤疮的原因多种多样,包括遗传、荷尔蒙、皮脂腺活动、细菌、气候、化学和心理。到目前为止,皮肤科医生使用手动方法,如直接目测和普通闪光灯摄影来评估痤疮。这些方法既耗时又乏味。为了解决这些问题,近年来研究人员提出了计算成像方法来帮助痤疮诊断。本文提出了一种从数码单反(DSLR)相机拍摄的照片中识别痤疮病变、疤痕和正常皮肤特征的算法。图像从RGB转换为CIELAB色彩空间,阈值划分为三个簇,并使用最小欧几里得距离进行分割。随机选取的图像分割结果灵敏度和特异性均大于80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of acne lesions, scars and normal skin for acne vulgaris cases
Acne affects 85% of adolescents at some time during their lives. There are various causes for acne including genetic, hormonal, sebaceous activity, bacteria, climate, chemical and psychological. Till now, dermatologists use manual methods such as direct visual assessment and ordinary flash photography to assess the acne. These methods are very time consuming and tedious. To address these issues, researchers in recent years have proposed computational imaging methods for aiding in the acne diagnosis. This paper proposes an algorithm to identify acne lesions, scars and normal skin features from photographs taken by Digital Single-Lens Reflex (DSLR) cameras. The images are converted from RGB to CIELAB color space, thresholded to three clusters and segmented using minimum Euclidean distance. The segmentation results from randomly selected images show sensitivity and specificity of greater than 80%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信