{"title":"非平衡态激子凝聚体WSe2的超快生成和熔化","authors":"E. Perfetto, G. Stefanucci","doi":"10.1103/PhysRevB.103.L241404","DOIUrl":null,"url":null,"abstract":"We study the screened dynamics of the nonequilibrium excitonic consensate forming in a bulk WSe$_{2}$ when illuminated by coherent light resonant with the lowest-energy exciton. Intervalley scattering causes electron migration from the optically populated K valley to the conduction band minimum at $\\Sigma$. Due to the electron-hole unbalance at the K point a plasma of quasi-free holes develops, which efficiently screens the interaction of the remaining excitons. We show that this plasma screening causes an ultrafast melting of the nonequilibrium consensate and that during melting coherent excitons and quasi-free electron-hole pairs coexist. The time-resolved spectral function does exhibit a conduction and excitonic sidebands of opposite convexity and relative spectral weight that changes in time. Both the dependence of the time-dependent conduction density on the laser intensity and the time-resolved spectral function agree with recent experiments.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ultrafast creation and melting of nonequilibrium excitonic condensates in bulk \\nWSe2\",\"authors\":\"E. Perfetto, G. Stefanucci\",\"doi\":\"10.1103/PhysRevB.103.L241404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the screened dynamics of the nonequilibrium excitonic consensate forming in a bulk WSe$_{2}$ when illuminated by coherent light resonant with the lowest-energy exciton. Intervalley scattering causes electron migration from the optically populated K valley to the conduction band minimum at $\\\\Sigma$. Due to the electron-hole unbalance at the K point a plasma of quasi-free holes develops, which efficiently screens the interaction of the remaining excitons. We show that this plasma screening causes an ultrafast melting of the nonequilibrium consensate and that during melting coherent excitons and quasi-free electron-hole pairs coexist. The time-resolved spectral function does exhibit a conduction and excitonic sidebands of opposite convexity and relative spectral weight that changes in time. Both the dependence of the time-dependent conduction density on the laser intensity and the time-resolved spectral function agree with recent experiments.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevB.103.L241404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.L241404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrafast creation and melting of nonequilibrium excitonic condensates in bulk
WSe2
We study the screened dynamics of the nonequilibrium excitonic consensate forming in a bulk WSe$_{2}$ when illuminated by coherent light resonant with the lowest-energy exciton. Intervalley scattering causes electron migration from the optically populated K valley to the conduction band minimum at $\Sigma$. Due to the electron-hole unbalance at the K point a plasma of quasi-free holes develops, which efficiently screens the interaction of the remaining excitons. We show that this plasma screening causes an ultrafast melting of the nonequilibrium consensate and that during melting coherent excitons and quasi-free electron-hole pairs coexist. The time-resolved spectral function does exhibit a conduction and excitonic sidebands of opposite convexity and relative spectral weight that changes in time. Both the dependence of the time-dependent conduction density on the laser intensity and the time-resolved spectral function agree with recent experiments.