{"title":"利用土壤细菌及其对气候变化下可持续农业的益处。","authors":"Rohini Mattoo","doi":"10.1079/cabireviews202217002","DOIUrl":null,"url":null,"abstract":"Abstract\n Soil bacteria contribute effectively to key biogeochemical reactions in the soil rhizosphere. They support plants in the rhizosphere to adapt quickly to changing climatic conditions. Differences in root exudates, trace gas chemistry, chemical compounds and nutrient exchange contribute to the recruitment of diverse microorganisms by plant roots. This review highlights the importance of characterizing novel microorganisms to support sustainable agricultural practices. We discuss about tools for characterizing microbes and agricultural practices that influence microbial diversity, and have reviewed how microorganisms may have important but unidentified roles in climate change. Beneficial microbes could improve the turnover of carbon, nitrogen, phosphorus and other minerals thereby avoiding the use of chemical inputs, which are not only causing serious environmental harm but also pose danger to human and animal health.","PeriodicalId":39273,"journal":{"name":"CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Harnessing soil bacteria and their benefits for sustainable agriculture with changing climate.\",\"authors\":\"Rohini Mattoo\",\"doi\":\"10.1079/cabireviews202217002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract\\n Soil bacteria contribute effectively to key biogeochemical reactions in the soil rhizosphere. They support plants in the rhizosphere to adapt quickly to changing climatic conditions. Differences in root exudates, trace gas chemistry, chemical compounds and nutrient exchange contribute to the recruitment of diverse microorganisms by plant roots. This review highlights the importance of characterizing novel microorganisms to support sustainable agricultural practices. We discuss about tools for characterizing microbes and agricultural practices that influence microbial diversity, and have reviewed how microorganisms may have important but unidentified roles in climate change. Beneficial microbes could improve the turnover of carbon, nitrogen, phosphorus and other minerals thereby avoiding the use of chemical inputs, which are not only causing serious environmental harm but also pose danger to human and animal health.\",\"PeriodicalId\":39273,\"journal\":{\"name\":\"CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1079/cabireviews202217002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Veterinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1079/cabireviews202217002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Veterinary","Score":null,"Total":0}
Harnessing soil bacteria and their benefits for sustainable agriculture with changing climate.
Abstract
Soil bacteria contribute effectively to key biogeochemical reactions in the soil rhizosphere. They support plants in the rhizosphere to adapt quickly to changing climatic conditions. Differences in root exudates, trace gas chemistry, chemical compounds and nutrient exchange contribute to the recruitment of diverse microorganisms by plant roots. This review highlights the importance of characterizing novel microorganisms to support sustainable agricultural practices. We discuss about tools for characterizing microbes and agricultural practices that influence microbial diversity, and have reviewed how microorganisms may have important but unidentified roles in climate change. Beneficial microbes could improve the turnover of carbon, nitrogen, phosphorus and other minerals thereby avoiding the use of chemical inputs, which are not only causing serious environmental harm but also pose danger to human and animal health.