Hunter Heineman, O. Omar, Benjamin Rippel, Ryan F Keeley, M. Mehan, Surendra K. Gupta, G. Takacs
{"title":"臭氧增强聚醚酮(Peek)膜的润湿性以提高燃料电池性能","authors":"Hunter Heineman, O. Omar, Benjamin Rippel, Ryan F Keeley, M. Mehan, Surendra K. Gupta, G. Takacs","doi":"10.21926/jept.2204040","DOIUrl":null,"url":null,"abstract":"Ozone was reacted with the aromatic membrane polyetheretherketone (PEEK) to form oxidized functional groups on the surface to enhance the attraction and transport of protons in fuel cells. Ozonation of unsaturated C-C sp2 bonds in PEEK formed a primary ozonide which dissociated to primarily produce O=C-O/O=C-OH moieties, and the root mean squared roughness factor (Rq) decreased from 7.4 nm, for the untreated sample, down to 3.1 nm. The oxidation of the surface and decrease in surface roughness made the surface increase in hydrophilicity as observed by the decrease in the water contact angle (CA) from 80.3° for untreated PEEK down to 21.7°. Washing the treated surface with solvent decreased the O at % on the surface indicating the formation of a weak boundary layer because of bond breakage during the decomposition of the ozonide.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Wettability of Polyetheretherketone (Peek) Membrane with Ozone for Improving Fuel Cell Performance\",\"authors\":\"Hunter Heineman, O. Omar, Benjamin Rippel, Ryan F Keeley, M. Mehan, Surendra K. Gupta, G. Takacs\",\"doi\":\"10.21926/jept.2204040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ozone was reacted with the aromatic membrane polyetheretherketone (PEEK) to form oxidized functional groups on the surface to enhance the attraction and transport of protons in fuel cells. Ozonation of unsaturated C-C sp2 bonds in PEEK formed a primary ozonide which dissociated to primarily produce O=C-O/O=C-OH moieties, and the root mean squared roughness factor (Rq) decreased from 7.4 nm, for the untreated sample, down to 3.1 nm. The oxidation of the surface and decrease in surface roughness made the surface increase in hydrophilicity as observed by the decrease in the water contact angle (CA) from 80.3° for untreated PEEK down to 21.7°. Washing the treated surface with solvent decreased the O at % on the surface indicating the formation of a weak boundary layer because of bond breakage during the decomposition of the ozonide.\",\"PeriodicalId\":53427,\"journal\":{\"name\":\"Journal of Nuclear Energy Science and Power Generation Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Energy Science and Power Generation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/jept.2204040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy Science and Power Generation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/jept.2204040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
Enhancing the Wettability of Polyetheretherketone (Peek) Membrane with Ozone for Improving Fuel Cell Performance
Ozone was reacted with the aromatic membrane polyetheretherketone (PEEK) to form oxidized functional groups on the surface to enhance the attraction and transport of protons in fuel cells. Ozonation of unsaturated C-C sp2 bonds in PEEK formed a primary ozonide which dissociated to primarily produce O=C-O/O=C-OH moieties, and the root mean squared roughness factor (Rq) decreased from 7.4 nm, for the untreated sample, down to 3.1 nm. The oxidation of the surface and decrease in surface roughness made the surface increase in hydrophilicity as observed by the decrease in the water contact angle (CA) from 80.3° for untreated PEEK down to 21.7°. Washing the treated surface with solvent decreased the O at % on the surface indicating the formation of a weak boundary layer because of bond breakage during the decomposition of the ozonide.