{"title":"有限域上三次齐次方程的线性化覆盖。下界","authors":"V. Gabrielyan","doi":"10.46991/pysu:a/2019.53.2.119","DOIUrl":null,"url":null,"abstract":"We obtain lower bounds for the complexity of linearized coverings for some sets of special solutions of the equation $$ x_{1}x_{2}x_{3} \\mathclose{+} x_{2}x_{3}x_{4} \\mathclose{+} \\cdots \\mathclose{+} x_{3n}x_{1}x_{2} \\mathclose{+} x_{1}x_{3}x_{5} \\mathclose{+} x_{4}x_{6}x_{8} \\mathclose{+} \\cdots \\mathclose{+} x_{3n-2}x_{3n}x_{2} \\mathclose{=} b $$ over an arbitrary finite field.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON LINEARIZED COVERINGS OF A CUBIC HOMOGENEOUS EQUATION OVER A FINITE FIELD. LOWER BOUNDS\",\"authors\":\"V. Gabrielyan\",\"doi\":\"10.46991/pysu:a/2019.53.2.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain lower bounds for the complexity of linearized coverings for some sets of special solutions of the equation $$ x_{1}x_{2}x_{3} \\\\mathclose{+} x_{2}x_{3}x_{4} \\\\mathclose{+} \\\\cdots \\\\mathclose{+} x_{3n}x_{1}x_{2} \\\\mathclose{+} x_{1}x_{3}x_{5} \\\\mathclose{+} x_{4}x_{6}x_{8} \\\\mathclose{+} \\\\cdots \\\\mathclose{+} x_{3n-2}x_{3n}x_{2} \\\\mathclose{=} b $$ over an arbitrary finite field.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2019.53.2.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2019.53.2.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON LINEARIZED COVERINGS OF A CUBIC HOMOGENEOUS EQUATION OVER A FINITE FIELD. LOWER BOUNDS
We obtain lower bounds for the complexity of linearized coverings for some sets of special solutions of the equation $$ x_{1}x_{2}x_{3} \mathclose{+} x_{2}x_{3}x_{4} \mathclose{+} \cdots \mathclose{+} x_{3n}x_{1}x_{2} \mathclose{+} x_{1}x_{3}x_{5} \mathclose{+} x_{4}x_{6}x_{8} \mathclose{+} \cdots \mathclose{+} x_{3n-2}x_{3n}x_{2} \mathclose{=} b $$ over an arbitrary finite field.