有限域上三次齐次方程的线性化覆盖。下界

V. Gabrielyan
{"title":"有限域上三次齐次方程的线性化覆盖。下界","authors":"V. Gabrielyan","doi":"10.46991/pysu:a/2019.53.2.119","DOIUrl":null,"url":null,"abstract":"We obtain lower bounds for the complexity of linearized coverings for some sets of special solutions of the equation $$ x_{1}x_{2}x_{3} \\mathclose{+} x_{2}x_{3}x_{4} \\mathclose{+} \\cdots \\mathclose{+} x_{3n}x_{1}x_{2} \\mathclose{+} x_{1}x_{3}x_{5} \\mathclose{+} x_{4}x_{6}x_{8} \\mathclose{+} \\cdots \\mathclose{+} x_{3n-2}x_{3n}x_{2} \\mathclose{=} b $$ over an arbitrary finite field.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON LINEARIZED COVERINGS OF A CUBIC HOMOGENEOUS EQUATION OVER A FINITE FIELD. LOWER BOUNDS\",\"authors\":\"V. Gabrielyan\",\"doi\":\"10.46991/pysu:a/2019.53.2.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain lower bounds for the complexity of linearized coverings for some sets of special solutions of the equation $$ x_{1}x_{2}x_{3} \\\\mathclose{+} x_{2}x_{3}x_{4} \\\\mathclose{+} \\\\cdots \\\\mathclose{+} x_{3n}x_{1}x_{2} \\\\mathclose{+} x_{1}x_{3}x_{5} \\\\mathclose{+} x_{4}x_{6}x_{8} \\\\mathclose{+} \\\\cdots \\\\mathclose{+} x_{3n-2}x_{3n}x_{2} \\\\mathclose{=} b $$ over an arbitrary finite field.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2019.53.2.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2019.53.2.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了方程$$ x_{1}x_{2}x_{3} \mathclose{+} x_{2}x_{3}x_{4} \mathclose{+} \cdots \mathclose{+} x_{3n}x_{1}x_{2} \mathclose{+} x_{1}x_{3}x_{5} \mathclose{+} x_{4}x_{6}x_{8} \mathclose{+} \cdots \mathclose{+} x_{3n-2}x_{3n}x_{2} \mathclose{=} b $$在任意有限域上的一些特解集的线性化覆盖复杂度的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON LINEARIZED COVERINGS OF A CUBIC HOMOGENEOUS EQUATION OVER A FINITE FIELD. LOWER BOUNDS
We obtain lower bounds for the complexity of linearized coverings for some sets of special solutions of the equation $$ x_{1}x_{2}x_{3} \mathclose{+} x_{2}x_{3}x_{4} \mathclose{+} \cdots \mathclose{+} x_{3n}x_{1}x_{2} \mathclose{+} x_{1}x_{3}x_{5} \mathclose{+} x_{4}x_{6}x_{8} \mathclose{+} \cdots \mathclose{+} x_{3n-2}x_{3n}x_{2} \mathclose{=} b $$ over an arbitrary finite field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信