动力学Fokker-Planck方程的时间平均值

IF 1 4区 数学 Q1 MATHEMATICS
G. Brigati
{"title":"动力学Fokker-Planck方程的时间平均值","authors":"G. Brigati","doi":"10.3934/krm.2022037","DOIUrl":null,"url":null,"abstract":"We consider kinetic Fokker-Planck (or Vlasov-Fokker-Planck) equations on the torus with Maxwellian or fat tail local equilibria. Results based on weak norms have recently been achieved by S. Armstrong and J.-C. Mourrat in case of Maxwellian local equilibria. Using adapted Poincar\\'e and Lions-type inequalities, we develop an explicit and constructive method for estimating the decay rate of time averages of norms of the solutions, which covers various regimes corresponding to subexponential, exponential and superexponential (including Maxwellian) local equilibria. As a consequence, we also derive hypocoercivity estimates, which are compared to similar results obtained by other techniques.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"19 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Time averages for kinetic Fokker-Planck equations\",\"authors\":\"G. Brigati\",\"doi\":\"10.3934/krm.2022037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider kinetic Fokker-Planck (or Vlasov-Fokker-Planck) equations on the torus with Maxwellian or fat tail local equilibria. Results based on weak norms have recently been achieved by S. Armstrong and J.-C. Mourrat in case of Maxwellian local equilibria. Using adapted Poincar\\\\'e and Lions-type inequalities, we develop an explicit and constructive method for estimating the decay rate of time averages of norms of the solutions, which covers various regimes corresponding to subexponential, exponential and superexponential (including Maxwellian) local equilibria. As a consequence, we also derive hypocoercivity estimates, which are compared to similar results obtained by other techniques.\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2022037\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2022037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑环面上具有麦克斯韦局部平衡或肥尾局部平衡的动力学Fokker-Planck(或Vlasov-Fokker-Planck)方程。S. Armstrong和j . c . c .最近取得了基于弱规范的结果。在麦克斯韦局部均衡的情况下。利用改进的Poincar\'e和lions型不等式,我们开发了一种估算解的范数时间平均衰减率的显式和建设性方法,该方法涵盖了对应于亚指数、指数和超指数(包括麦克斯韦)局部平衡的各种区域。因此,我们还得到了低矫顽力估计,并将其与其他技术获得的类似结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time averages for kinetic Fokker-Planck equations
We consider kinetic Fokker-Planck (or Vlasov-Fokker-Planck) equations on the torus with Maxwellian or fat tail local equilibria. Results based on weak norms have recently been achieved by S. Armstrong and J.-C. Mourrat in case of Maxwellian local equilibria. Using adapted Poincar\'e and Lions-type inequalities, we develop an explicit and constructive method for estimating the decay rate of time averages of norms of the solutions, which covers various regimes corresponding to subexponential, exponential and superexponential (including Maxwellian) local equilibria. As a consequence, we also derive hypocoercivity estimates, which are compared to similar results obtained by other techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信