算法982:一阶常系数线性初值常微分方程三角方程组的显式解

W. Van Snyder
{"title":"算法982:一阶常系数线性初值常微分方程三角方程组的显式解","authors":"W. Van Snyder","doi":"10.1145/3479429","DOIUrl":null,"url":null,"abstract":"Algorithm 982: Explicit solutions of triangular systems of first-order linear initial-value ordinary differential equations with constant coefficients provides an explicit solution for an homogeneous system, and a brief description of how to compute a solution for the inhomogeneous case. The method described is not directly useful if the coefficient matrix is singular. This remark explains more completely how to compute the solution for the inhomogeneous case and for the singular coefficient matrix case.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"50 1","pages":"1 - 4"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remark on Algorithm 982: Explicit Solutions of Triangular Systems of First-order Linear Initial-value Ordinary Differential Equations with Constant Coefficients\",\"authors\":\"W. Van Snyder\",\"doi\":\"10.1145/3479429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithm 982: Explicit solutions of triangular systems of first-order linear initial-value ordinary differential equations with constant coefficients provides an explicit solution for an homogeneous system, and a brief description of how to compute a solution for the inhomogeneous case. The method described is not directly useful if the coefficient matrix is singular. This remark explains more completely how to compute the solution for the inhomogeneous case and for the singular coefficient matrix case.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"50 1\",\"pages\":\"1 - 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3479429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3479429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

算法982:一阶常系数线性初值常微分方程三角形系统的显式解提供了齐次系统的显式解,并简要描述了如何计算非齐次情况的解。如果系数矩阵是奇异的,所描述的方法就不是直接有用的。这个注释更完整地解释了如何计算非齐次情况和奇异系数矩阵情况的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remark on Algorithm 982: Explicit Solutions of Triangular Systems of First-order Linear Initial-value Ordinary Differential Equations with Constant Coefficients
Algorithm 982: Explicit solutions of triangular systems of first-order linear initial-value ordinary differential equations with constant coefficients provides an explicit solution for an homogeneous system, and a brief description of how to compute a solution for the inhomogeneous case. The method described is not directly useful if the coefficient matrix is singular. This remark explains more completely how to compute the solution for the inhomogeneous case and for the singular coefficient matrix case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信