群论轨道可决性

IF 0.1 Q4 MATHEMATICS
E. Ventura
{"title":"群论轨道可决性","authors":"E. Ventura","doi":"10.1515/gcc-2014-0012","DOIUrl":null,"url":null,"abstract":"Abstract A recent collection of papers in the last years have given a renovated interest to the notion of orbit decidability. This is a new quite general algorithmic notion, connecting with several classical results, and closely related to the study of the conjugacy problem for extensions of groups. In the present survey we explain several of the classical results closely related to this concept, and we explain the main ideas behind the recent connection with the conjugacy problem made by Bogopolski–Martino–Ventura in [Trans. Amer. Math. Soc. 362 (2010), 2003–2036]. All the consequences up to date, published in several other papers by other authors, are also commented and reviewed.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"62 1","pages":"133 - 148"},"PeriodicalIF":0.1000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Group-theoretic orbit decidability\",\"authors\":\"E. Ventura\",\"doi\":\"10.1515/gcc-2014-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A recent collection of papers in the last years have given a renovated interest to the notion of orbit decidability. This is a new quite general algorithmic notion, connecting with several classical results, and closely related to the study of the conjugacy problem for extensions of groups. In the present survey we explain several of the classical results closely related to this concept, and we explain the main ideas behind the recent connection with the conjugacy problem made by Bogopolski–Martino–Ventura in [Trans. Amer. Math. Soc. 362 (2010), 2003–2036]. All the consequences up to date, published in several other papers by other authors, are also commented and reviewed.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"62 1\",\"pages\":\"133 - 148\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2014-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2014-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

最近几年的一些论文重新引起了人们对轨道可决性概念的兴趣。这是一个新的相当普遍的算法概念,它与几个经典的结果相联系,并与群的扩展共轭问题的研究密切相关。在目前的调查中,我们解释了几个与这个概念密切相关的经典结果,并解释了最近与Bogopolski-Martino-Ventura在[Trans]中提出的共轭问题的联系背后的主要思想。阿米尔。数学。社会科学进展,2003,19(4):332 - 336。所有最新的结果,由其他作者发表在其他几篇论文中,也进行了评论和审查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group-theoretic orbit decidability
Abstract A recent collection of papers in the last years have given a renovated interest to the notion of orbit decidability. This is a new quite general algorithmic notion, connecting with several classical results, and closely related to the study of the conjugacy problem for extensions of groups. In the present survey we explain several of the classical results closely related to this concept, and we explain the main ideas behind the recent connection with the conjugacy problem made by Bogopolski–Martino–Ventura in [Trans. Amer. Math. Soc. 362 (2010), 2003–2036]. All the consequences up to date, published in several other papers by other authors, are also commented and reviewed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信