S. Rojas Flores, Orlando Pérez-Delgado, Nazario Naveda-Renny, Santiago M. Benites, M. De La Cruz –Noriega, D. D. Delfin Narciso
{"title":"微生物燃料电池中以糖蜜为燃料发电的研究","authors":"S. Rojas Flores, Orlando Pérez-Delgado, Nazario Naveda-Renny, Santiago M. Benites, M. De La Cruz –Noriega, D. D. Delfin Narciso","doi":"10.5755/j01.erem.78.2.30668","DOIUrl":null,"url":null,"abstract":"The large amount of molasses that are generated in sugar-processing companies are not always redistributed for commercialization in by-products. Because of this, the present research uses these wastes as fuel in low-cost, lab-scale, single-chamber microbial fuel cells. Zinc and copper electrodes were used as electrodes and 100 mL of molasse in the chamber as fuel, managing to generate current and voltage peaks of 1.73 ± 0.13 mA and 0.953 ± 0.142 V. In monitoring the conductivity of the substrate, a maximum peak of 111.156 ± 8.45 mS/cm was observed, and a slightly acidic pH was observed throughout the monitoring. It was possible to obtain a power density of 5.45 ± 0.31 W/cm2 for a current density of 308.06 mA/cm2, while the yeast count showed a logarithmic curve throughout the monitoring. Finally, the molecular technique identified 100% of the special C. boidinii present in the anodic electrode. This research will give great benefits to sugar companies because they will be able to generate electricity using the molasses that cannot generate by-products.","PeriodicalId":11703,"journal":{"name":"Environmental Research, Engineering and Management","volume":"138 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Generation of Bioelectricity Using Molasses as Fuel in Microbial Fuel Cells\",\"authors\":\"S. Rojas Flores, Orlando Pérez-Delgado, Nazario Naveda-Renny, Santiago M. Benites, M. De La Cruz –Noriega, D. D. Delfin Narciso\",\"doi\":\"10.5755/j01.erem.78.2.30668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large amount of molasses that are generated in sugar-processing companies are not always redistributed for commercialization in by-products. Because of this, the present research uses these wastes as fuel in low-cost, lab-scale, single-chamber microbial fuel cells. Zinc and copper electrodes were used as electrodes and 100 mL of molasse in the chamber as fuel, managing to generate current and voltage peaks of 1.73 ± 0.13 mA and 0.953 ± 0.142 V. In monitoring the conductivity of the substrate, a maximum peak of 111.156 ± 8.45 mS/cm was observed, and a slightly acidic pH was observed throughout the monitoring. It was possible to obtain a power density of 5.45 ± 0.31 W/cm2 for a current density of 308.06 mA/cm2, while the yeast count showed a logarithmic curve throughout the monitoring. Finally, the molecular technique identified 100% of the special C. boidinii present in the anodic electrode. This research will give great benefits to sugar companies because they will be able to generate electricity using the molasses that cannot generate by-products.\",\"PeriodicalId\":11703,\"journal\":{\"name\":\"Environmental Research, Engineering and Management\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research, Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.erem.78.2.30668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research, Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j01.erem.78.2.30668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Generation of Bioelectricity Using Molasses as Fuel in Microbial Fuel Cells
The large amount of molasses that are generated in sugar-processing companies are not always redistributed for commercialization in by-products. Because of this, the present research uses these wastes as fuel in low-cost, lab-scale, single-chamber microbial fuel cells. Zinc and copper electrodes were used as electrodes and 100 mL of molasse in the chamber as fuel, managing to generate current and voltage peaks of 1.73 ± 0.13 mA and 0.953 ± 0.142 V. In monitoring the conductivity of the substrate, a maximum peak of 111.156 ± 8.45 mS/cm was observed, and a slightly acidic pH was observed throughout the monitoring. It was possible to obtain a power density of 5.45 ± 0.31 W/cm2 for a current density of 308.06 mA/cm2, while the yeast count showed a logarithmic curve throughout the monitoring. Finally, the molecular technique identified 100% of the special C. boidinii present in the anodic electrode. This research will give great benefits to sugar companies because they will be able to generate electricity using the molasses that cannot generate by-products.
期刊介绍:
First published in 1995, the journal Environmental Research, Engineering and Management (EREM) is an international multidisciplinary journal designed to serve as a roadmap for understanding complex issues and debates of sustainable development. EREM publishes peer-reviewed scientific papers which cover research in the fields of environmental science, engineering (pollution prevention, resource efficiency), management, energy (renewables), agricultural and biological sciences, and social sciences. EREM’s topics of interest include, but are not limited to, the following: environmental research, ecological monitoring, and climate change; environmental pollution – impact assessment, mitigation, and prevention; environmental engineering, sustainable production, and eco innovations; environmental management, strategy, standards, social responsibility; environmental economics, policy, and law; sustainable consumption and education.