层流数值波槽在低度湍流非线性波浪中升沉浮筒流体动力学研究中的应用

IF 1.5 4区 工程技术 Q3 ENGINEERING, MARINE
Yijun Sun, A. Hamada, O. Sallam, B. Windén, M. Fürth
{"title":"层流数值波槽在低度湍流非线性波浪中升沉浮筒流体动力学研究中的应用","authors":"Yijun Sun, A. Hamada, O. Sallam, B. Windén, M. Fürth","doi":"10.1177/14750902231168674","DOIUrl":null,"url":null,"abstract":"Numerical Wave Tanks (NWTs) allow for in-depth investigations into the hydrodynamics and wave responses of floating objects. Thus, they are widely used during the design phase of many offshore platforms and devices. Such problems often feature low turbulence, with wave propagation and wave-object interaction being the key features. In this paper, the merits of using a laminar flow model for a NWT with a free-to-heave buoy, subject to second order Stokes waves in a low sea state is investigated. The simulations are implemented using the interFoam solver, which is embedded in OpenFOAM. The time series of waves measured upstream and downstream of the buoy, and the buoy hydrodynamics are compared to analytical and experimental results for accuracy evaluations. It is shown that, due to the low turbulence level of the problem, the laminar approach can deliver more accurate results than turbulent models, such as Reynolds-averaged Navier-Stokes Simulation (RANS) or partially-averaged Navier-Stokes Simulation (PANS). Moreover, the simulation time of the laminar simulations is significantly shorter than to those of RANS and PANS.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"51 1","pages":"805 - 817"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The application of laminar numerical wave tank for a heaving buoy hydrodynamics study in low-turbulence nonlinear waves\",\"authors\":\"Yijun Sun, A. Hamada, O. Sallam, B. Windén, M. Fürth\",\"doi\":\"10.1177/14750902231168674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical Wave Tanks (NWTs) allow for in-depth investigations into the hydrodynamics and wave responses of floating objects. Thus, they are widely used during the design phase of many offshore platforms and devices. Such problems often feature low turbulence, with wave propagation and wave-object interaction being the key features. In this paper, the merits of using a laminar flow model for a NWT with a free-to-heave buoy, subject to second order Stokes waves in a low sea state is investigated. The simulations are implemented using the interFoam solver, which is embedded in OpenFOAM. The time series of waves measured upstream and downstream of the buoy, and the buoy hydrodynamics are compared to analytical and experimental results for accuracy evaluations. It is shown that, due to the low turbulence level of the problem, the laminar approach can deliver more accurate results than turbulent models, such as Reynolds-averaged Navier-Stokes Simulation (RANS) or partially-averaged Navier-Stokes Simulation (PANS). Moreover, the simulation time of the laminar simulations is significantly shorter than to those of RANS and PANS.\",\"PeriodicalId\":20667,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"volume\":\"51 1\",\"pages\":\"805 - 817\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14750902231168674\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231168674","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1

摘要

数值波槽(NWTs)允许深入研究流体力学和浮动物体的波浪响应。因此,它们在许多海上平台和设备的设计阶段被广泛使用。这类问题通常以低湍流度为特征,波的传播和波-物相互作用是关键特征。本文研究了低海况下二阶斯托克斯波作用下带自由升沉浮标的西北西北海域层流模型的优点。仿真是使用嵌入在OpenFOAM中的interFoam求解器实现的。将浮标上下游测得的波浪时间序列以及浮标的水动力与分析结果和实验结果进行了比较,以评价浮标的精度。结果表明,由于问题的湍流程度较低,层流方法比湍流模型(如reynolds -average Navier-Stokes Simulation (RANS)或部分平均Navier-Stokes Simulation (PANS))可以提供更准确的结果。层流模拟的模拟时间明显短于RANS和PANS的模拟时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The application of laminar numerical wave tank for a heaving buoy hydrodynamics study in low-turbulence nonlinear waves
Numerical Wave Tanks (NWTs) allow for in-depth investigations into the hydrodynamics and wave responses of floating objects. Thus, they are widely used during the design phase of many offshore platforms and devices. Such problems often feature low turbulence, with wave propagation and wave-object interaction being the key features. In this paper, the merits of using a laminar flow model for a NWT with a free-to-heave buoy, subject to second order Stokes waves in a low sea state is investigated. The simulations are implemented using the interFoam solver, which is embedded in OpenFOAM. The time series of waves measured upstream and downstream of the buoy, and the buoy hydrodynamics are compared to analytical and experimental results for accuracy evaluations. It is shown that, due to the low turbulence level of the problem, the laminar approach can deliver more accurate results than turbulent models, such as Reynolds-averaged Navier-Stokes Simulation (RANS) or partially-averaged Navier-Stokes Simulation (PANS). Moreover, the simulation time of the laminar simulations is significantly shorter than to those of RANS and PANS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
11.10%
发文量
77
审稿时长
>12 weeks
期刊介绍: The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信