{"title":"复合体局部上同模的附加素数","authors":"Nguyen Minh Tri","doi":"10.1216/jca.2023.15.75","DOIUrl":null,"url":null,"abstract":". Let ( R, m ) be a local ring, Z a specialization closed subset of Spec R and X an R -complex with finitely generated homology and finite dimension. We show that Att R H dim X Z ( X ) = { p ∈ Supp R X | cd( Z , R/ p ) − inf X p = dim R X } . We also represent a generalization of Lichtenbaum-Hartshorne Vanishing Theorem for complexes of R -modules.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATTACHED PRIMES OF LOCAL COHOMOLOGY MODULES OF COMPLEXES\",\"authors\":\"Nguyen Minh Tri\",\"doi\":\"10.1216/jca.2023.15.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let ( R, m ) be a local ring, Z a specialization closed subset of Spec R and X an R -complex with finitely generated homology and finite dimension. We show that Att R H dim X Z ( X ) = { p ∈ Supp R X | cd( Z , R/ p ) − inf X p = dim R X } . We also represent a generalization of Lichtenbaum-Hartshorne Vanishing Theorem for complexes of R -modules.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2023.15.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2023.15.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
. 设(R, m)是一个局部环,Z是Spec R和X的专门化闭子集,是一个具有有限生成同调和有限维数的R -复形。我们证明了Att R H dim X Z (X) = {p∈Supp R X | cd(Z, R/ p)−inf X p = dim R X}。我们还对R -模复形的Lichtenbaum-Hartshorne消失定理进行了推广。
ATTACHED PRIMES OF LOCAL COHOMOLOGY MODULES OF COMPLEXES
. Let ( R, m ) be a local ring, Z a specialization closed subset of Spec R and X an R -complex with finitely generated homology and finite dimension. We show that Att R H dim X Z ( X ) = { p ∈ Supp R X | cd( Z , R/ p ) − inf X p = dim R X } . We also represent a generalization of Lichtenbaum-Hartshorne Vanishing Theorem for complexes of R -modules.