迭代反演系统:一种有效可视化Kleinian群和扩展分形艺术可能性的算法

IF 0.3 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Kento Nakamura
{"title":"迭代反演系统:一种有效可视化Kleinian群和扩展分形艺术可能性的算法","authors":"Kento Nakamura","doi":"10.1080/17513472.2021.1943998","DOIUrl":null,"url":null,"abstract":"Kleinian group theory is a branch of mathematics. A visualized Kleinian group often presents a beautiful fractal structure and provides clues for understanding Möbius transformations the mathematical properties of the group. However, it often takes much time to render images of Kleinian groups on a computer. Thus, we propose an efficient algorithm for visualizing some kinds of Kleinian groups: the Iterated Inversion System (IIS), which enables us to render images of Kleinian groups composed of inversions as circles or spheres in real-time. Real-time rendering has various applications; for example, the IIS can be used for experimentation in Kleinian group theory and the creation of mathematical art. The algorithm can also be used to draw both two-dimensional and three-dimensional fractals. The algorithm can extend the possibilities of art originating from Kleinian groups. In this paper, we discuss Kleinian fractals from an artistic viewpoint. GRAPHICAL ABSTRACT","PeriodicalId":42612,"journal":{"name":"Journal of Mathematics and the Arts","volume":"38 1","pages":"106 - 136"},"PeriodicalIF":0.3000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Iterated inversion system: an algorithm for efficiently visualizing Kleinian groups and extending the possibilities of fractal art\",\"authors\":\"Kento Nakamura\",\"doi\":\"10.1080/17513472.2021.1943998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kleinian group theory is a branch of mathematics. A visualized Kleinian group often presents a beautiful fractal structure and provides clues for understanding Möbius transformations the mathematical properties of the group. However, it often takes much time to render images of Kleinian groups on a computer. Thus, we propose an efficient algorithm for visualizing some kinds of Kleinian groups: the Iterated Inversion System (IIS), which enables us to render images of Kleinian groups composed of inversions as circles or spheres in real-time. Real-time rendering has various applications; for example, the IIS can be used for experimentation in Kleinian group theory and the creation of mathematical art. The algorithm can also be used to draw both two-dimensional and three-dimensional fractals. The algorithm can extend the possibilities of art originating from Kleinian groups. In this paper, we discuss Kleinian fractals from an artistic viewpoint. GRAPHICAL ABSTRACT\",\"PeriodicalId\":42612,\"journal\":{\"name\":\"Journal of Mathematics and the Arts\",\"volume\":\"38 1\",\"pages\":\"106 - 136\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and the Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17513472.2021.1943998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and the Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17513472.2021.1943998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

克莱因群论是数学的一个分支。一个可视化的Kleinian群通常呈现出美丽的分形结构,并为理解Möbius变换群的数学性质提供线索。然而,在计算机上渲染克莱因群体的图像通常需要花费很多时间。因此,我们提出了一种有效的算法来可视化某些类型的Kleinian群:迭代反演系统(IIS),它使我们能够实时地将由反转组成的Kleinian群图像渲染为圆形或球体。实时渲染有各种各样的应用;例如,IIS可以用于克莱因群论的实验和数学艺术的创作。该算法还可以用于绘制二维和三维分形。该算法可以扩展源自Kleinian群组的艺术的可能性。本文从艺术的角度讨论克莱因分形。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterated inversion system: an algorithm for efficiently visualizing Kleinian groups and extending the possibilities of fractal art
Kleinian group theory is a branch of mathematics. A visualized Kleinian group often presents a beautiful fractal structure and provides clues for understanding Möbius transformations the mathematical properties of the group. However, it often takes much time to render images of Kleinian groups on a computer. Thus, we propose an efficient algorithm for visualizing some kinds of Kleinian groups: the Iterated Inversion System (IIS), which enables us to render images of Kleinian groups composed of inversions as circles or spheres in real-time. Real-time rendering has various applications; for example, the IIS can be used for experimentation in Kleinian group theory and the creation of mathematical art. The algorithm can also be used to draw both two-dimensional and three-dimensional fractals. The algorithm can extend the possibilities of art originating from Kleinian groups. In this paper, we discuss Kleinian fractals from an artistic viewpoint. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and the Arts
Journal of Mathematics and the Arts MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
0.50
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信