{"title":"有理函数劳伦级数对角线的解析延拓","authors":"D. Pochekutov","doi":"10.17516/1997-1397-2021-14-3-360-368","DOIUrl":null,"url":null,"abstract":"We describe branch points of complete q-diagonals of Laurent series for rational functions in several complex variables in terms of the logarithmic Gauss mapping. The sufficient condition of non-algebraicity of such a diagonal is proven","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"35 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic Continuation of Diagonals of Laurent Series for Rational Functions\",\"authors\":\"D. Pochekutov\",\"doi\":\"10.17516/1997-1397-2021-14-3-360-368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe branch points of complete q-diagonals of Laurent series for rational functions in several complex variables in terms of the logarithmic Gauss mapping. The sufficient condition of non-algebraicity of such a diagonal is proven\",\"PeriodicalId\":43965,\"journal\":{\"name\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2021-14-3-360-368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2021-14-3-360-368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Analytic Continuation of Diagonals of Laurent Series for Rational Functions
We describe branch points of complete q-diagonals of Laurent series for rational functions in several complex variables in terms of the logarithmic Gauss mapping. The sufficient condition of non-algebraicity of such a diagonal is proven