空间初始数据缓慢变化时Vlasov-Poisson-Landau方程的解

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Bobylev, I. Potapenko
{"title":"空间初始数据缓慢变化时Vlasov-Poisson-Landau方程的解","authors":"A. Bobylev, I. Potapenko","doi":"10.3934/krm.2022020","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The paper is devoted to analytical and numerical study of solutions to the Vlasov-Poisson-Landau kinetic equations (VPLE) for distribution functions with typical length <inline-formula><tex-math id=\"M1\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\varepsilon = r_D/L << 1 $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M3\">\\begin{document}$ r_D $\\end{document}</tex-math></inline-formula> stands for the Debye radius. It is also assumed that the Knudsen number <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mathrm{K\\!n} = l/L = O(1) $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M5\">\\begin{document}$ l $\\end{document}</tex-math></inline-formula> denotes the mean free pass of electrons. We use the standard model of plasma of electrons with a spatially homogeneous neutralizing background of infinitely heavy ions. The initial data is always assumed to be close to neutral. We study an asymptotic behavior of the system for small <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\varepsilon > 0 $\\end{document}</tex-math></inline-formula>. It is known that the formal limit of VPLE at <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\varepsilon = 0 $\\end{document}</tex-math></inline-formula> does not describe a rapidly oscillating part of the electrical field. Our aim is to fill this gap and to study the behavior of the \"true\" electrical field near this limit. We show that, in the problem with standard isotropic in velocities Maxwellian initial conditions, there is almost no damping of these oscillations in the collisionless case. An approximate formula for the electrical field is derived and then confirmed numerically by using a simplified BGK-type model of VPLE. Another class of initial conditions that leads to strong oscillations having the amplitude of order <inline-formula><tex-math id=\"M8\">\\begin{document}$ O(1/\\varepsilon ) $\\end{document}</tex-math></inline-formula> is considered. A formal asymptotic expansion of solution in powers of <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\varepsilon $\\end{document}</tex-math></inline-formula> is constructed. Numerical solutions of that class are studied for different values of parameters <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\varepsilon $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M11\">\\begin{document}$ \\mathrm{K\\!n} $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On solutions of Vlasov-Poisson-Landau equations for slowly varying in space initial data\",\"authors\":\"A. Bobylev, I. Potapenko\",\"doi\":\"10.3934/krm.2022020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>The paper is devoted to analytical and numerical study of solutions to the Vlasov-Poisson-Landau kinetic equations (VPLE) for distribution functions with typical length <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ L $\\\\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\varepsilon = r_D/L << 1 $\\\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ r_D $\\\\end{document}</tex-math></inline-formula> stands for the Debye radius. It is also assumed that the Knudsen number <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\mathrm{K\\\\!n} = l/L = O(1) $\\\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ l $\\\\end{document}</tex-math></inline-formula> denotes the mean free pass of electrons. We use the standard model of plasma of electrons with a spatially homogeneous neutralizing background of infinitely heavy ions. The initial data is always assumed to be close to neutral. We study an asymptotic behavior of the system for small <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\varepsilon > 0 $\\\\end{document}</tex-math></inline-formula>. It is known that the formal limit of VPLE at <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\varepsilon = 0 $\\\\end{document}</tex-math></inline-formula> does not describe a rapidly oscillating part of the electrical field. Our aim is to fill this gap and to study the behavior of the \\\"true\\\" electrical field near this limit. We show that, in the problem with standard isotropic in velocities Maxwellian initial conditions, there is almost no damping of these oscillations in the collisionless case. An approximate formula for the electrical field is derived and then confirmed numerically by using a simplified BGK-type model of VPLE. Another class of initial conditions that leads to strong oscillations having the amplitude of order <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ O(1/\\\\varepsilon ) $\\\\end{document}</tex-math></inline-formula> is considered. A formal asymptotic expansion of solution in powers of <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ \\\\varepsilon $\\\\end{document}</tex-math></inline-formula> is constructed. Numerical solutions of that class are studied for different values of parameters <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ \\\\varepsilon $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ \\\\mathrm{K\\\\!n} $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2022020\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2022020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文对典型长度为\begin{document}$ L $\end{document}的分布函数的vlasovv - poisson - landau动力学方程(VPLE)的解进行了解析和数值研究,使\begin{document}$ \varepsilon = r_D/L,其中\begin{document}$ r_D $\end{document}表示德拜半径。还假设Knudsen数\begin{document}$ \ mathm {K\!n} = l/ l = O(1) $\end{document},其中\begin{document}$ l $\end{document}表示电子的平均自由通度。我们使用电子等离子体的标准模型,具有空间均匀的无限大重离子中和背景。初始数据总是被假定为接近中性。我们研究了当\begin{document}$ \varepsilon > 0 $\end{document}时系统的渐近行为。众所周知,VPLE在\begin{document}$ \varepsilon = 0 $\end{document}处的形式极限并没有描述电场的快速振荡部分。我们的目标是填补这一空白,并研究接近这一极限的“真实”电场的行为。我们证明,在具有标准各向同性速度麦克斯韦初始条件的问题中,在无碰撞情况下,这些振荡几乎没有阻尼。利用简化的bgk型VPLE模型,推导了电场的近似公式,并进行了数值验证。考虑另一类导致强振荡的初始条件,其振幅为阶\begin{document}$ O(1/\varepsilon) $\end{document}。构造了\begin{document}$ \varepsilon $\end{document}的幂次解的形式渐近展开式。研究了参数\begin{document}$ \varepsilon $\end{document}和\begin{document}$ \ mathm {K\!的数值解。n} $ \{文档}结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On solutions of Vlasov-Poisson-Landau equations for slowly varying in space initial data

The paper is devoted to analytical and numerical study of solutions to the Vlasov-Poisson-Landau kinetic equations (VPLE) for distribution functions with typical length \begin{document}$ L $\end{document} such that \begin{document}$ \varepsilon = r_D/L << 1 $\end{document}, where \begin{document}$ r_D $\end{document} stands for the Debye radius. It is also assumed that the Knudsen number \begin{document}$ \mathrm{K\!n} = l/L = O(1) $\end{document}, where \begin{document}$ l $\end{document} denotes the mean free pass of electrons. We use the standard model of plasma of electrons with a spatially homogeneous neutralizing background of infinitely heavy ions. The initial data is always assumed to be close to neutral. We study an asymptotic behavior of the system for small \begin{document}$ \varepsilon > 0 $\end{document}. It is known that the formal limit of VPLE at \begin{document}$ \varepsilon = 0 $\end{document} does not describe a rapidly oscillating part of the electrical field. Our aim is to fill this gap and to study the behavior of the "true" electrical field near this limit. We show that, in the problem with standard isotropic in velocities Maxwellian initial conditions, there is almost no damping of these oscillations in the collisionless case. An approximate formula for the electrical field is derived and then confirmed numerically by using a simplified BGK-type model of VPLE. Another class of initial conditions that leads to strong oscillations having the amplitude of order \begin{document}$ O(1/\varepsilon ) $\end{document} is considered. A formal asymptotic expansion of solution in powers of \begin{document}$ \varepsilon $\end{document} is constructed. Numerical solutions of that class are studied for different values of parameters \begin{document}$ \varepsilon $\end{document} and \begin{document}$ \mathrm{K\!n} $\end{document}.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信