视频印象估计及其在视频创作中的应用

Kiyoshi Tokunaga, Takahiro Hayashi
{"title":"视频印象估计及其在视频创作中的应用","authors":"Kiyoshi Tokunaga, Takahiro Hayashi","doi":"10.1109/ISM.2013.25","DOIUrl":null,"url":null,"abstract":"Adding BGM (background music) to a video is an important process in video creation because BGM determines the impression of the video. We model impression estimation of a video as mappping from computer-mesurable audio and visual features to impression degrees. As an application of impression estimation of a video, we propose OtoPittan, a system for recommending BGM for helping users to make impressive videos. OtoPittan regards the problem of selecting BGM from a music collection as a partial inverse problem of the impression estimation. That is, to an inputted video and desired impression, BGM which produces a good match to the desired impression when adding it to the inputted video is recommended. As implementation ways of impression estimation of a video, we use a static user model and a dynamic user model. The first model statically constructs a mapping function learnt from training data. The second model dynamically optimizes a mapping function through user interaction. Experimental results have shown that the static user model has high estimation accuracy and the dynamic user model can efficiently performs optimization without much user interaction.","PeriodicalId":6311,"journal":{"name":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","volume":"50 1","pages":"102-105"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impression Estimation of Video and Application to Video Creation\",\"authors\":\"Kiyoshi Tokunaga, Takahiro Hayashi\",\"doi\":\"10.1109/ISM.2013.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adding BGM (background music) to a video is an important process in video creation because BGM determines the impression of the video. We model impression estimation of a video as mappping from computer-mesurable audio and visual features to impression degrees. As an application of impression estimation of a video, we propose OtoPittan, a system for recommending BGM for helping users to make impressive videos. OtoPittan regards the problem of selecting BGM from a music collection as a partial inverse problem of the impression estimation. That is, to an inputted video and desired impression, BGM which produces a good match to the desired impression when adding it to the inputted video is recommended. As implementation ways of impression estimation of a video, we use a static user model and a dynamic user model. The first model statically constructs a mapping function learnt from training data. The second model dynamically optimizes a mapping function through user interaction. Experimental results have shown that the static user model has high estimation accuracy and the dynamic user model can efficiently performs optimization without much user interaction.\",\"PeriodicalId\":6311,\"journal\":{\"name\":\"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)\",\"volume\":\"50 1\",\"pages\":\"102-105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2013.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2013.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在视频中加入背景音乐是视频创作的一个重要环节,因为背景音乐决定了视频给人的印象。我们将视频的印象估计建模为从计算机可测量的音频和视觉特征到印象度的映射。作为视频印象估计的一个应用,我们提出了一个推荐BGM的系统OtoPittan,以帮助用户制作印象深刻的视频。OtoPittan将从音乐集合中选择BGM的问题看作是印象估计的偏逆问题。即,对于输入的视频和期望的印象,推荐添加到输入的视频时,与期望的印象产生良好匹配的BGM。作为视频印象估计的实现方法,我们使用了静态用户模型和动态用户模型。第一个模型静态地构造了一个从训练数据中学习到的映射函数。第二个模型通过用户交互动态优化映射功能。实验结果表明,静态用户模型具有较高的估计精度,动态用户模型可以在不需要大量用户交互的情况下有效地进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impression Estimation of Video and Application to Video Creation
Adding BGM (background music) to a video is an important process in video creation because BGM determines the impression of the video. We model impression estimation of a video as mappping from computer-mesurable audio and visual features to impression degrees. As an application of impression estimation of a video, we propose OtoPittan, a system for recommending BGM for helping users to make impressive videos. OtoPittan regards the problem of selecting BGM from a music collection as a partial inverse problem of the impression estimation. That is, to an inputted video and desired impression, BGM which produces a good match to the desired impression when adding it to the inputted video is recommended. As implementation ways of impression estimation of a video, we use a static user model and a dynamic user model. The first model statically constructs a mapping function learnt from training data. The second model dynamically optimizes a mapping function through user interaction. Experimental results have shown that the static user model has high estimation accuracy and the dynamic user model can efficiently performs optimization without much user interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信