具有随机源的退化对流扩散方程时分裂近似的收敛性

IF 3.8 2区 数学 Q1 MATHEMATICS
Roberto Díaz-Adame, S. Jerez
{"title":"具有随机源的退化对流扩散方程时分裂近似的收敛性","authors":"Roberto Díaz-Adame, S. Jerez","doi":"10.1515/JNMA-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we propose a time-splitting method for degenerate convection–diffusion equations perturbed stochastically by white noise. This work generalizes previous results on splitting operator techniques for stochastic hyperbolic conservation laws for the degenerate parabolic case. The convergence in Llocp$\\begin{array}{} \\displaystyle L^p_{\\rm loc} \\end{array}$ of the time-splitting operator scheme to the unique weak entropy solution is proven. Moreover, we analyze the performance of the splitting approximation by computing its convergence rate and showing numerical simulations for some benchmark examples, including a fluid flow application in porous media.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convergence of time-splitting approximations for degenerate convection–diffusion equations with a random source\",\"authors\":\"Roberto Díaz-Adame, S. Jerez\",\"doi\":\"10.1515/JNMA-2020-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we propose a time-splitting method for degenerate convection–diffusion equations perturbed stochastically by white noise. This work generalizes previous results on splitting operator techniques for stochastic hyperbolic conservation laws for the degenerate parabolic case. The convergence in Llocp$\\\\begin{array}{} \\\\displaystyle L^p_{\\\\rm loc} \\\\end{array}$ of the time-splitting operator scheme to the unique weak entropy solution is proven. Moreover, we analyze the performance of the splitting approximation by computing its convergence rate and showing numerical simulations for some benchmark examples, including a fluid flow application in porous media.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/JNMA-2020-0012\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/JNMA-2020-0012","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文提出了一种解受白噪声随机扰动的退化对流扩散方程的时间分裂方法。本文推广了以往关于退化抛物型情况下随机双曲守恒律的分裂算子技术的结果。证明了时间分裂算子格式在Llocp $\begin{array}{} \displaystyle L^p_{\rm loc} \end{array}$中收敛于唯一弱熵解。此外,我们还通过计算其收敛速度来分析分裂近似的性能,并对一些基准示例进行了数值模拟,包括流体在多孔介质中的流动应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of time-splitting approximations for degenerate convection–diffusion equations with a random source
Abstract In this paper we propose a time-splitting method for degenerate convection–diffusion equations perturbed stochastically by white noise. This work generalizes previous results on splitting operator techniques for stochastic hyperbolic conservation laws for the degenerate parabolic case. The convergence in Llocp$\begin{array}{} \displaystyle L^p_{\rm loc} \end{array}$ of the time-splitting operator scheme to the unique weak entropy solution is proven. Moreover, we analyze the performance of the splitting approximation by computing its convergence rate and showing numerical simulations for some benchmark examples, including a fluid flow application in porous media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信