基于压缩数据的神经网络高效I/O训练

Zhao Zhang, Lei Huang, J. G. Pauloski, Ian T Foster
{"title":"基于压缩数据的神经网络高效I/O训练","authors":"Zhao Zhang, Lei Huang, J. G. Pauloski, Ian T Foster","doi":"10.1109/IPDPS47924.2020.00050","DOIUrl":null,"url":null,"abstract":"FanStore is a shared object store that enables efficient and scalable neural network training on supercomputers. By providing a global cache layer on node-local burst buffers using a compressed representation, it significantly enhances the processing capability of deep learning (DL) applications on existing hardware. In addition, FanStore allows POSIX-compliant file access to the compressed data in user space. We investigate the tradeoff between runtime overhead and data compression ratio using real-world datasets and applications, and propose a compressor selection algorithm to maximize storage capacity given performance constraints. We consider both asynchronous (i.e., with prefetching) and synchronous I/O strategies, and propose mechanisms for selecting compressors for both approaches. Using FanStore, the same storage hardware can host 2–13× more data for example applications without significant runtime overhead. Empirically, our experiments show that FanStore scales to 512 compute nodes with near linear performance scalability.","PeriodicalId":6805,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"87 1","pages":"409-418"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient I/O for Neural Network Training with Compressed Data\",\"authors\":\"Zhao Zhang, Lei Huang, J. G. Pauloski, Ian T Foster\",\"doi\":\"10.1109/IPDPS47924.2020.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FanStore is a shared object store that enables efficient and scalable neural network training on supercomputers. By providing a global cache layer on node-local burst buffers using a compressed representation, it significantly enhances the processing capability of deep learning (DL) applications on existing hardware. In addition, FanStore allows POSIX-compliant file access to the compressed data in user space. We investigate the tradeoff between runtime overhead and data compression ratio using real-world datasets and applications, and propose a compressor selection algorithm to maximize storage capacity given performance constraints. We consider both asynchronous (i.e., with prefetching) and synchronous I/O strategies, and propose mechanisms for selecting compressors for both approaches. Using FanStore, the same storage hardware can host 2–13× more data for example applications without significant runtime overhead. Empirically, our experiments show that FanStore scales to 512 compute nodes with near linear performance scalability.\",\"PeriodicalId\":6805,\"journal\":{\"name\":\"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"87 1\",\"pages\":\"409-418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS47924.2020.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS47924.2020.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

FanStore是一个共享对象存储,可以在超级计算机上实现高效和可扩展的神经网络训练。通过使用压缩表示在节点本地突发缓冲区上提供全局缓存层,它显着增强了现有硬件上深度学习(DL)应用程序的处理能力。此外,FanStore允许posix兼容的文件访问压缩后的数据在用户空间。我们使用现实世界的数据集和应用程序研究了运行时开销和数据压缩比之间的权衡,并提出了一种压缩机选择算法来最大化给定性能约束的存储容量。我们考虑了异步(即,带预取)和同步I/O策略,并提出了为这两种方法选择压缩器的机制。使用FanStore,相同的存储硬件可以承载2 - 13倍以上的数据,而不会产生显著的运行时开销。根据经验,我们的实验表明,FanStore可扩展到512个计算节点,具有接近线性的性能可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient I/O for Neural Network Training with Compressed Data
FanStore is a shared object store that enables efficient and scalable neural network training on supercomputers. By providing a global cache layer on node-local burst buffers using a compressed representation, it significantly enhances the processing capability of deep learning (DL) applications on existing hardware. In addition, FanStore allows POSIX-compliant file access to the compressed data in user space. We investigate the tradeoff between runtime overhead and data compression ratio using real-world datasets and applications, and propose a compressor selection algorithm to maximize storage capacity given performance constraints. We consider both asynchronous (i.e., with prefetching) and synchronous I/O strategies, and propose mechanisms for selecting compressors for both approaches. Using FanStore, the same storage hardware can host 2–13× more data for example applications without significant runtime overhead. Empirically, our experiments show that FanStore scales to 512 compute nodes with near linear performance scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信