Kei Suzuki, S. Aoki, Y. Aoki, G. Cossu, H. Fukaya, S. Hashimoto, C. Rohrhofer
{"title":"N_f=2晶格QCD高温下的轴向U(1)对称性和介子相关子","authors":"Kei Suzuki, S. Aoki, Y. Aoki, G. Cossu, H. Fukaya, S. Hashimoto, C. Rohrhofer","doi":"10.22323/1.363.0178","DOIUrl":null,"url":null,"abstract":"We investigate the high-temperature phase of QCD using lattice QCD simulations with $N_f = 2$ dynamical Mobius domain-wall fermions. On generated configurations, we study the axial $U(1)$ symmetry, overlap-Dirac spectra, screening masses from mesonic correlators, and topological susceptibility. We find that some of the observables are quite sensitive to lattice artifacts due to a small violation of the chiral symmetry. For those observables, we reweight the Mobius domain-wall fermion determinant by that of the overlap fermion. We also check the volume dependence of observables. Our data near the chiral limit indicates a strong suppression of the axial $U(1)$ anomaly at temperatures $\\geq$ 220 MeV.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Axial U(1) symmetry and mesonic correlators at high temperature in $N_f=2$ lattice QCD\",\"authors\":\"Kei Suzuki, S. Aoki, Y. Aoki, G. Cossu, H. Fukaya, S. Hashimoto, C. Rohrhofer\",\"doi\":\"10.22323/1.363.0178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the high-temperature phase of QCD using lattice QCD simulations with $N_f = 2$ dynamical Mobius domain-wall fermions. On generated configurations, we study the axial $U(1)$ symmetry, overlap-Dirac spectra, screening masses from mesonic correlators, and topological susceptibility. We find that some of the observables are quite sensitive to lattice artifacts due to a small violation of the chiral symmetry. For those observables, we reweight the Mobius domain-wall fermion determinant by that of the overlap fermion. We also check the volume dependence of observables. Our data near the chiral limit indicates a strong suppression of the axial $U(1)$ anomaly at temperatures $\\\\geq$ 220 MeV.\",\"PeriodicalId\":8440,\"journal\":{\"name\":\"arXiv: High Energy Physics - Lattice\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.363.0178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Axial U(1) symmetry and mesonic correlators at high temperature in $N_f=2$ lattice QCD
We investigate the high-temperature phase of QCD using lattice QCD simulations with $N_f = 2$ dynamical Mobius domain-wall fermions. On generated configurations, we study the axial $U(1)$ symmetry, overlap-Dirac spectra, screening masses from mesonic correlators, and topological susceptibility. We find that some of the observables are quite sensitive to lattice artifacts due to a small violation of the chiral symmetry. For those observables, we reweight the Mobius domain-wall fermion determinant by that of the overlap fermion. We also check the volume dependence of observables. Our data near the chiral limit indicates a strong suppression of the axial $U(1)$ anomaly at temperatures $\geq$ 220 MeV.