{"title":"电磁理论与离散外微积分","authors":"Shu C. Chen, W. Chew","doi":"10.2528/PIER17051501","DOIUrl":null,"url":null,"abstract":"A self-contained electromagnetic theory is developed on a simplicial lattice. Instead of dealing with vectorial field, discrete exterior calculus (DEC) studies the discrete differential forms of electric and magnetic fields, and circumcenter dual is adopted to achieve diagonal Hodge star operators. In this paper, Gauss’ theorem and Stokes’ theorem are shown to be satisfied inherently within DEC. Many other electromagnetic theorems, such as Huygens’ principle, reciprocity theorem, and Poynting’s theorem, can also be derived on this simplicial lattice consistently with an appropriate definition of wedge product between cochains. The preservation of these theorems guarantees that this treatment of Maxwell’s equations will not lead to spurious solutions.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"38 1","pages":"59-78"},"PeriodicalIF":6.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Electromagnetic Theory with Discrete Exterior Calculus\",\"authors\":\"Shu C. Chen, W. Chew\",\"doi\":\"10.2528/PIER17051501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A self-contained electromagnetic theory is developed on a simplicial lattice. Instead of dealing with vectorial field, discrete exterior calculus (DEC) studies the discrete differential forms of electric and magnetic fields, and circumcenter dual is adopted to achieve diagonal Hodge star operators. In this paper, Gauss’ theorem and Stokes’ theorem are shown to be satisfied inherently within DEC. Many other electromagnetic theorems, such as Huygens’ principle, reciprocity theorem, and Poynting’s theorem, can also be derived on this simplicial lattice consistently with an appropriate definition of wedge product between cochains. The preservation of these theorems guarantees that this treatment of Maxwell’s equations will not lead to spurious solutions.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"38 1\",\"pages\":\"59-78\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/PIER17051501\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER17051501","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Electromagnetic Theory with Discrete Exterior Calculus
A self-contained electromagnetic theory is developed on a simplicial lattice. Instead of dealing with vectorial field, discrete exterior calculus (DEC) studies the discrete differential forms of electric and magnetic fields, and circumcenter dual is adopted to achieve diagonal Hodge star operators. In this paper, Gauss’ theorem and Stokes’ theorem are shown to be satisfied inherently within DEC. Many other electromagnetic theorems, such as Huygens’ principle, reciprocity theorem, and Poynting’s theorem, can also be derived on this simplicial lattice consistently with an appropriate definition of wedge product between cochains. The preservation of these theorems guarantees that this treatment of Maxwell’s equations will not lead to spurious solutions.
期刊介绍:
Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.