{"title":"温和反应条件下[Mn(CO) 5br]催化co2硅氢化反应","authors":"T. González, Juventino J. García","doi":"10.2139/ssrn.3804178","DOIUrl":null,"url":null,"abstract":"Carbon dioxide hydrosilylation with earth-abundant transition-metal catalysts is an attractive alternative for the design of greener and cost-effective synthetic strategies. Herein, simple [Mn(CO)<sub>5</sub>Br] is an efficient precatalyst in the hydrosilylation of carbon dioxide with Et<sub>3</sub>SiH under mild reaction conditions. Using THF as a solvent, triethylsilylformate Et<sub>3</sub>SiCH(O)O was obtained in 67% yield after 1 hour at 50 °C and 4 bar of CO<sub>2</sub> pressure. The selectivity of the reaction was tuned by changing the solvent to a mixture of THF and toluene producing bis(triethylsilyl)acetal (Et<sub>3</sub>SiO)<sub>2</sub>CH<sub>2</sub> in 86% yield. The CO<sub>2</sub> hydrosilylation was also effective at room temperature and atmospheric pressure using either THF or the mixture THF/toluene as the solvent resulting in high Et3SiH conversion (92% - 99%) but with a decrease in the selectivity. Radical trapping experiments indicated the participation of radical species in the catalytic mechanism. To the best of our knowledge, this is the first report on CO<sub>2</sub> hydrosilylation catalyzed by transition-metal radical intermediates.","PeriodicalId":19542,"journal":{"name":"Organic Chemistry eJournal","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Catalytic CO 2 Hydrosilylation with [Mn(CO) 5br] Under Mild Reaction Conditions\",\"authors\":\"T. González, Juventino J. García\",\"doi\":\"10.2139/ssrn.3804178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon dioxide hydrosilylation with earth-abundant transition-metal catalysts is an attractive alternative for the design of greener and cost-effective synthetic strategies. Herein, simple [Mn(CO)<sub>5</sub>Br] is an efficient precatalyst in the hydrosilylation of carbon dioxide with Et<sub>3</sub>SiH under mild reaction conditions. Using THF as a solvent, triethylsilylformate Et<sub>3</sub>SiCH(O)O was obtained in 67% yield after 1 hour at 50 °C and 4 bar of CO<sub>2</sub> pressure. The selectivity of the reaction was tuned by changing the solvent to a mixture of THF and toluene producing bis(triethylsilyl)acetal (Et<sub>3</sub>SiO)<sub>2</sub>CH<sub>2</sub> in 86% yield. The CO<sub>2</sub> hydrosilylation was also effective at room temperature and atmospheric pressure using either THF or the mixture THF/toluene as the solvent resulting in high Et3SiH conversion (92% - 99%) but with a decrease in the selectivity. Radical trapping experiments indicated the participation of radical species in the catalytic mechanism. To the best of our knowledge, this is the first report on CO<sub>2</sub> hydrosilylation catalyzed by transition-metal radical intermediates.\",\"PeriodicalId\":19542,\"journal\":{\"name\":\"Organic Chemistry eJournal\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Chemistry eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3804178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3804178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Catalytic CO 2 Hydrosilylation with [Mn(CO) 5br] Under Mild Reaction Conditions
Carbon dioxide hydrosilylation with earth-abundant transition-metal catalysts is an attractive alternative for the design of greener and cost-effective synthetic strategies. Herein, simple [Mn(CO)5Br] is an efficient precatalyst in the hydrosilylation of carbon dioxide with Et3SiH under mild reaction conditions. Using THF as a solvent, triethylsilylformate Et3SiCH(O)O was obtained in 67% yield after 1 hour at 50 °C and 4 bar of CO2 pressure. The selectivity of the reaction was tuned by changing the solvent to a mixture of THF and toluene producing bis(triethylsilyl)acetal (Et3SiO)2CH2 in 86% yield. The CO2 hydrosilylation was also effective at room temperature and atmospheric pressure using either THF or the mixture THF/toluene as the solvent resulting in high Et3SiH conversion (92% - 99%) but with a decrease in the selectivity. Radical trapping experiments indicated the participation of radical species in the catalytic mechanism. To the best of our knowledge, this is the first report on CO2 hydrosilylation catalyzed by transition-metal radical intermediates.