求解非线性三谐方程dirichlet边值问题的数值方法

D. A, Hung Nguyen Quoc, Quang Vu Vinh
{"title":"求解非线性三谐方程dirichlet边值问题的数值方法","authors":"D. A, Hung Nguyen Quoc, Quang Vu Vinh","doi":"10.15625/1813-9663/38/2/16912","DOIUrl":null,"url":null,"abstract":"In this work, we consider the Dirichlet boundary value problem for nonlinear triharmonic equation. Due to the reduction of the problem to operator equation for the pair of the right hand side function and the unknown second normal derivative of the function to be sought, we design an iterative method at both continuous and discrete levels for numerical solution of the problem. Some examples demonstrate that the numerical method is of fourth order convergence. When the right hand side function does not depend on the unknown function and its derivatives, the numerical method gives more accurate results in comparison with the results obtained by the interior method of Gudi and Neilan.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUMERICAL METHOD FOR SOLVING THE DIRICHLET BOUNDARY VALUE PROBLEM FOR NONLINEAR TRIHARMONIC EQUATION\",\"authors\":\"D. A, Hung Nguyen Quoc, Quang Vu Vinh\",\"doi\":\"10.15625/1813-9663/38/2/16912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the Dirichlet boundary value problem for nonlinear triharmonic equation. Due to the reduction of the problem to operator equation for the pair of the right hand side function and the unknown second normal derivative of the function to be sought, we design an iterative method at both continuous and discrete levels for numerical solution of the problem. Some examples demonstrate that the numerical method is of fourth order convergence. When the right hand side function does not depend on the unknown function and its derivatives, the numerical method gives more accurate results in comparison with the results obtained by the interior method of Gudi and Neilan.\",\"PeriodicalId\":15444,\"journal\":{\"name\":\"Journal of Computer Science and Cybernetics\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/1813-9663/38/2/16912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/38/2/16912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非线性三调和方程的Dirichlet边值问题。由于将问题简化为右侧函数对的算子方程和待求函数的未知二阶法向导数,我们设计了一种连续和离散水平的迭代方法来数值求解问题。算例表明,数值方法具有四阶收敛性。当右侧函数不依赖于未知函数及其导数时,数值方法给出的结果比Gudi和Neilan的内部方法得到的结果更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUMERICAL METHOD FOR SOLVING THE DIRICHLET BOUNDARY VALUE PROBLEM FOR NONLINEAR TRIHARMONIC EQUATION
In this work, we consider the Dirichlet boundary value problem for nonlinear triharmonic equation. Due to the reduction of the problem to operator equation for the pair of the right hand side function and the unknown second normal derivative of the function to be sought, we design an iterative method at both continuous and discrete levels for numerical solution of the problem. Some examples demonstrate that the numerical method is of fourth order convergence. When the right hand side function does not depend on the unknown function and its derivatives, the numerical method gives more accurate results in comparison with the results obtained by the interior method of Gudi and Neilan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信