{"title":"使用机器学习方法设计和实现用于听力分类的便携式自动听力计","authors":"V. Raja Sankari, U. Snekhalatha, T. Rajalakshmi","doi":"10.4015/s1016237222500351","DOIUrl":null,"url":null,"abstract":"Audiometric tests can identify the hearing loss at specific frequencies using the audiogram. The aim and objectives of the study were (i) to develop an automated audiometer for self-diagnosing the hearing ability of the patient; (ii) to extract the features from the acoustic signals and to classify the normal and profound hearing loss patients using different machine learning algorithms; (iii) to validate the hearing loss classification using six-frequency average (6-FA) method based on simple linear regression analysis and machine learning algorithms. The study is conducted among 150 patients, including 75 patients with normal hearing ability and 75 patients with profound hearing loss. The total population of 150 underwent audiometric test both in the soundproof audiometric room and in the normal field environment. Based on the patient response, the intensity and frequency are changed automatically, and the audiogram is plotted by the principle of Artificial Neural Network learning procedures. The overall accuracy produced by classification of normal and profound hearing loss patients using Support Vector Machine (SVM), k-Nearest Neighbor classifier, and Naïve Bayes classifier is 97%, 96%, and 95%, respectively. The results indicated that the SVM classifier outperforms the other two classifiers well. The preliminary audiometric test can be performed remotely and then consulted with an audiologist. Thus, the patient could operate the developed prototype independently and get a consultation from trained medical personnel.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"68 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DESIGN AND IMPLEMENTATION OF A PORTABLE AUTOMATED AUDIOMETER FOR HEARING CLASSIFICATION USING MACHINE LEARNING APPROACHES\",\"authors\":\"V. Raja Sankari, U. Snekhalatha, T. Rajalakshmi\",\"doi\":\"10.4015/s1016237222500351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audiometric tests can identify the hearing loss at specific frequencies using the audiogram. The aim and objectives of the study were (i) to develop an automated audiometer for self-diagnosing the hearing ability of the patient; (ii) to extract the features from the acoustic signals and to classify the normal and profound hearing loss patients using different machine learning algorithms; (iii) to validate the hearing loss classification using six-frequency average (6-FA) method based on simple linear regression analysis and machine learning algorithms. The study is conducted among 150 patients, including 75 patients with normal hearing ability and 75 patients with profound hearing loss. The total population of 150 underwent audiometric test both in the soundproof audiometric room and in the normal field environment. Based on the patient response, the intensity and frequency are changed automatically, and the audiogram is plotted by the principle of Artificial Neural Network learning procedures. The overall accuracy produced by classification of normal and profound hearing loss patients using Support Vector Machine (SVM), k-Nearest Neighbor classifier, and Naïve Bayes classifier is 97%, 96%, and 95%, respectively. The results indicated that the SVM classifier outperforms the other two classifiers well. The preliminary audiometric test can be performed remotely and then consulted with an audiologist. Thus, the patient could operate the developed prototype independently and get a consultation from trained medical personnel.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237222500351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237222500351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
DESIGN AND IMPLEMENTATION OF A PORTABLE AUTOMATED AUDIOMETER FOR HEARING CLASSIFICATION USING MACHINE LEARNING APPROACHES
Audiometric tests can identify the hearing loss at specific frequencies using the audiogram. The aim and objectives of the study were (i) to develop an automated audiometer for self-diagnosing the hearing ability of the patient; (ii) to extract the features from the acoustic signals and to classify the normal and profound hearing loss patients using different machine learning algorithms; (iii) to validate the hearing loss classification using six-frequency average (6-FA) method based on simple linear regression analysis and machine learning algorithms. The study is conducted among 150 patients, including 75 patients with normal hearing ability and 75 patients with profound hearing loss. The total population of 150 underwent audiometric test both in the soundproof audiometric room and in the normal field environment. Based on the patient response, the intensity and frequency are changed automatically, and the audiogram is plotted by the principle of Artificial Neural Network learning procedures. The overall accuracy produced by classification of normal and profound hearing loss patients using Support Vector Machine (SVM), k-Nearest Neighbor classifier, and Naïve Bayes classifier is 97%, 96%, and 95%, respectively. The results indicated that the SVM classifier outperforms the other two classifiers well. The preliminary audiometric test can be performed remotely and then consulted with an audiologist. Thus, the patient could operate the developed prototype independently and get a consultation from trained medical personnel.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.