可证明性多格逻辑

Q1 Arts and Humanities
Y. Petrukhin
{"title":"可证明性多格逻辑","authors":"Y. Petrukhin","doi":"10.1080/11663081.2023.2178780","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we introduce provability multilattice logic and multilattice arithmetic which extends first-order multilattice logic with equality by multilattice versions of Peano axioms. We show that has the provability interpretation with respect to and prove the arithmetic completeness theorem for it. We formulate in the form of a nested sequent calculus and show that cut is admissible in it. We introduce the notion of a provability multilattice and develop algebraic semantics for on its basis, by the method of Lindenbaum-Tarski algebras we prove the algebraic completeness theorem. We present Kripke semantics for and establish the Kripke completeness theorem via syntactical and semantic embeddings from into and vice versa. Last but not least, the decidability of is shown.","PeriodicalId":38573,"journal":{"name":"Journal of Applied Non-Classical Logics","volume":"46 1","pages":"239 - 272"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Provability multilattice logic\",\"authors\":\"Y. Petrukhin\",\"doi\":\"10.1080/11663081.2023.2178780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, we introduce provability multilattice logic and multilattice arithmetic which extends first-order multilattice logic with equality by multilattice versions of Peano axioms. We show that has the provability interpretation with respect to and prove the arithmetic completeness theorem for it. We formulate in the form of a nested sequent calculus and show that cut is admissible in it. We introduce the notion of a provability multilattice and develop algebraic semantics for on its basis, by the method of Lindenbaum-Tarski algebras we prove the algebraic completeness theorem. We present Kripke semantics for and establish the Kripke completeness theorem via syntactical and semantic embeddings from into and vice versa. Last but not least, the decidability of is shown.\",\"PeriodicalId\":38573,\"journal\":{\"name\":\"Journal of Applied Non-Classical Logics\",\"volume\":\"46 1\",\"pages\":\"239 - 272\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Non-Classical Logics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/11663081.2023.2178780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Non-Classical Logics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11663081.2023.2178780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文利用Peano公理的多格版本,引入可证明性多格逻辑和多格算法,将一阶多格逻辑扩展为相等。证明了它的可证明性解释,并证明了它的算术完备性定理。我们用嵌套序列演算的形式来表述,并证明了切在其中是可容许的。引入可证明性多重格的概念,并在此基础上发展代数语义,利用Lindenbaum-Tarski代数方法证明了代数完备性定理。我们提出了Kripke语义,并通过语法和语义嵌入建立了Kripke完备性定理,反之亦然。最后但并非最不重要的是,显示了的可决性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Provability multilattice logic
ABSTRACT In this paper, we introduce provability multilattice logic and multilattice arithmetic which extends first-order multilattice logic with equality by multilattice versions of Peano axioms. We show that has the provability interpretation with respect to and prove the arithmetic completeness theorem for it. We formulate in the form of a nested sequent calculus and show that cut is admissible in it. We introduce the notion of a provability multilattice and develop algebraic semantics for on its basis, by the method of Lindenbaum-Tarski algebras we prove the algebraic completeness theorem. We present Kripke semantics for and establish the Kripke completeness theorem via syntactical and semantic embeddings from into and vice versa. Last but not least, the decidability of is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Non-Classical Logics
Journal of Applied Non-Classical Logics Arts and Humanities-Philosophy
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信