基于自适应深度学习的数据服务关键技术研究

Zhigang Zhao, Xinju Zhang
{"title":"基于自适应深度学习的数据服务关键技术研究","authors":"Zhigang Zhao, Xinju Zhang","doi":"10.17706/jsw.16.3.130-134","DOIUrl":null,"url":null,"abstract":"With the widespread adoption of big data technology, the diversity of data sources is continuously evolving. Data service technology is a technology derived from providing effective data interfaces for data applications. Based on the adaptive deep learning algorithm, this study proposes an improved service plan. First, the problem of randomly selecting the sending location of the data packet in the asynchronous random service scheme was analyzed, which leads to the waste of channel resources. Then, combined with the adaptive deep learning algorithm, an adaptive service scheme is specified. For the problem of large delay, the data frame is divided into multiple uniform position intervals. Therefore, the user learns the position interval until the user tends to select a position within the fixed position interval to send the data packet. Furthermore, in the algorithm’s iterative process, adaptive deep learning was used based on the ability of the algorithm to perform intensive learning. A detailed analysis of the various scenarios, the essential mode of the technology, and the computer simulation of the throughput and packet loss rate indicators of the proposed scheme in the three environments are provided to demonstrate the superiority of the proposed scheme.","PeriodicalId":11452,"journal":{"name":"e Informatica Softw. Eng. J.","volume":"29 1","pages":"130-134"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Key Technologies of Data Service Based on Adaptive Deep Learning\",\"authors\":\"Zhigang Zhao, Xinju Zhang\",\"doi\":\"10.17706/jsw.16.3.130-134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the widespread adoption of big data technology, the diversity of data sources is continuously evolving. Data service technology is a technology derived from providing effective data interfaces for data applications. Based on the adaptive deep learning algorithm, this study proposes an improved service plan. First, the problem of randomly selecting the sending location of the data packet in the asynchronous random service scheme was analyzed, which leads to the waste of channel resources. Then, combined with the adaptive deep learning algorithm, an adaptive service scheme is specified. For the problem of large delay, the data frame is divided into multiple uniform position intervals. Therefore, the user learns the position interval until the user tends to select a position within the fixed position interval to send the data packet. Furthermore, in the algorithm’s iterative process, adaptive deep learning was used based on the ability of the algorithm to perform intensive learning. A detailed analysis of the various scenarios, the essential mode of the technology, and the computer simulation of the throughput and packet loss rate indicators of the proposed scheme in the three environments are provided to demonstrate the superiority of the proposed scheme.\",\"PeriodicalId\":11452,\"journal\":{\"name\":\"e Informatica Softw. Eng. J.\",\"volume\":\"29 1\",\"pages\":\"130-134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e Informatica Softw. Eng. J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17706/jsw.16.3.130-134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e Informatica Softw. Eng. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17706/jsw.16.3.130-134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着大数据技术的广泛应用,数据源的多样性也在不断发展。数据服务技术是一种为数据应用程序提供有效数据接口的技术。基于自适应深度学习算法,提出了一种改进的服务方案。首先,分析了异步随机服务方案中数据包发送位置的随机选择导致信道资源浪费的问题;然后,结合自适应深度学习算法,提出了自适应服务方案。针对时延大的问题,将数据帧划分为多个均匀的位置间隔。因此,用户学习位置间隔,直到用户倾向于在固定的位置间隔内选择一个位置发送数据包。此外,在算法的迭代过程中,基于算法进行强化学习的能力,采用了自适应深度学习。详细分析了各种场景、技术的基本模式,并在三种环境下对所提方案的吞吐量和丢包率指标进行了计算机仿真,证明了所提方案的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Key Technologies of Data Service Based on Adaptive Deep Learning
With the widespread adoption of big data technology, the diversity of data sources is continuously evolving. Data service technology is a technology derived from providing effective data interfaces for data applications. Based on the adaptive deep learning algorithm, this study proposes an improved service plan. First, the problem of randomly selecting the sending location of the data packet in the asynchronous random service scheme was analyzed, which leads to the waste of channel resources. Then, combined with the adaptive deep learning algorithm, an adaptive service scheme is specified. For the problem of large delay, the data frame is divided into multiple uniform position intervals. Therefore, the user learns the position interval until the user tends to select a position within the fixed position interval to send the data packet. Furthermore, in the algorithm’s iterative process, adaptive deep learning was used based on the ability of the algorithm to perform intensive learning. A detailed analysis of the various scenarios, the essential mode of the technology, and the computer simulation of the throughput and packet loss rate indicators of the proposed scheme in the three environments are provided to demonstrate the superiority of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信