{"title":"基于生成对抗网络的卫星图像降噪","authors":"Akram Zaytar, Chaker El Amrani","doi":"10.4018/ijcini.2021010102","DOIUrl":null,"url":null,"abstract":"Using satellite imagery and remote sensing data for supervised and self-supervised learning problems can be quite challenging when parts of the underlying datasets are missing due to natural phenomena (clouds, fog, haze, mist, etc.). Solving this problem will improve remote sensing data augmentation and make use of it in a world where satellite imagery represents a great resource to exploit in any big data pipeline setup. In this paper, the authors present a generative adversarial network (GANs) model that can generate natural atmospheric noise that serves as a data augmentation preprocessing tool to produce input to supervised machine learning algorithms.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"225 1","pages":"16-25"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satellite Imagery Noising With Generative Adversarial Networks\",\"authors\":\"Akram Zaytar, Chaker El Amrani\",\"doi\":\"10.4018/ijcini.2021010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using satellite imagery and remote sensing data for supervised and self-supervised learning problems can be quite challenging when parts of the underlying datasets are missing due to natural phenomena (clouds, fog, haze, mist, etc.). Solving this problem will improve remote sensing data augmentation and make use of it in a world where satellite imagery represents a great resource to exploit in any big data pipeline setup. In this paper, the authors present a generative adversarial network (GANs) model that can generate natural atmospheric noise that serves as a data augmentation preprocessing tool to produce input to supervised machine learning algorithms.\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"225 1\",\"pages\":\"16-25\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.2021010102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.2021010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Satellite Imagery Noising With Generative Adversarial Networks
Using satellite imagery and remote sensing data for supervised and self-supervised learning problems can be quite challenging when parts of the underlying datasets are missing due to natural phenomena (clouds, fog, haze, mist, etc.). Solving this problem will improve remote sensing data augmentation and make use of it in a world where satellite imagery represents a great resource to exploit in any big data pipeline setup. In this paper, the authors present a generative adversarial network (GANs) model that can generate natural atmospheric noise that serves as a data augmentation preprocessing tool to produce input to supervised machine learning algorithms.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.