M. Ming-Wei Chang, M.T.-M. Deng, J.T.-J. Gwo, J. Mai, E. Hsu
{"title":"基于聚合物的电容式微机械超声换能器(CMUT)用于显微外科成像","authors":"M. Ming-Wei Chang, M.T.-M. Deng, J.T.-J. Gwo, J. Mai, E. Hsu","doi":"10.1109/NEMS.2006.334622","DOIUrl":null,"url":null,"abstract":"The design, simulation, and fabrication results for a first generation polymer CMUT are presented. Baseline ANSYS and MATLAB simulations show that the use of a silicon nitride membrane should increase the transmission signal by 28% and the receiver sensitivity by 33%, when compared to a conventional poly silicon membrane. Simulations with a polymer membrane showed a maximum membrane deflection increase up to 67%, at approximately 6.5 MHz, when compared to nitride. Furthermore, the optimal mechanical impendence coupling frequency was lowered to 3.7 MHz for the polymer. These simulations give design guidelines for a CMUT based on geometric parameters such as membrane length and thickness. A CMUT array was then designed and fabricated with a target DC actuation voltage of less than 50V. Also, results showed potential operation of the CMUT up to 10 MHz using a low temperature fabrication process that still results in durable operation","PeriodicalId":6362,"journal":{"name":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"124 1","pages":"61-65"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Polymer-based Capacitive Micromachined Ultrasonic Transducers (CMUT) for Micro Surgical Imaging Applications\",\"authors\":\"M. Ming-Wei Chang, M.T.-M. Deng, J.T.-J. Gwo, J. Mai, E. Hsu\",\"doi\":\"10.1109/NEMS.2006.334622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design, simulation, and fabrication results for a first generation polymer CMUT are presented. Baseline ANSYS and MATLAB simulations show that the use of a silicon nitride membrane should increase the transmission signal by 28% and the receiver sensitivity by 33%, when compared to a conventional poly silicon membrane. Simulations with a polymer membrane showed a maximum membrane deflection increase up to 67%, at approximately 6.5 MHz, when compared to nitride. Furthermore, the optimal mechanical impendence coupling frequency was lowered to 3.7 MHz for the polymer. These simulations give design guidelines for a CMUT based on geometric parameters such as membrane length and thickness. A CMUT array was then designed and fabricated with a target DC actuation voltage of less than 50V. Also, results showed potential operation of the CMUT up to 10 MHz using a low temperature fabrication process that still results in durable operation\",\"PeriodicalId\":6362,\"journal\":{\"name\":\"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"124 1\",\"pages\":\"61-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2006.334622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2006.334622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The design, simulation, and fabrication results for a first generation polymer CMUT are presented. Baseline ANSYS and MATLAB simulations show that the use of a silicon nitride membrane should increase the transmission signal by 28% and the receiver sensitivity by 33%, when compared to a conventional poly silicon membrane. Simulations with a polymer membrane showed a maximum membrane deflection increase up to 67%, at approximately 6.5 MHz, when compared to nitride. Furthermore, the optimal mechanical impendence coupling frequency was lowered to 3.7 MHz for the polymer. These simulations give design guidelines for a CMUT based on geometric parameters such as membrane length and thickness. A CMUT array was then designed and fabricated with a target DC actuation voltage of less than 50V. Also, results showed potential operation of the CMUT up to 10 MHz using a low temperature fabrication process that still results in durable operation