Nicholas Skar-Gislinge, Søren A R Kynde, Ilia G Denisov, Xin Ye, Ivan Lenov, Stephen G Sligar, Lise Arleth
{"title":"用小角散射法测定嵌入磷脂纳米盘环境中的人类细胞色素 P450 的形状和定位。","authors":"Nicholas Skar-Gislinge, Søren A R Kynde, Ilia G Denisov, Xin Ye, Ivan Lenov, Stephen G Sligar, Lise Arleth","doi":"10.1107/S1399004715018702","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane proteins reconstituted into phospholipid nanodiscs comprise a soluble entity accessible to solution small-angle X-ray scattering (SAXS) studies. It is demonstrated that using SAXS data it is possible to determine both the shape and localization of the membrane protein cytochrome P450 3A4 (CYP3A4) while it is embedded in the phospholipid bilayer of a nanodisc. In order to accomplish this, a hybrid approach to analysis of small-angle scattering data was developed which combines an analytical approach to describe the multi-contrast nanodisc with a free-form bead-model description of the embedded protein. The protein shape is then reconstructed ab initio to optimally fit the data. The result of using this approach is compared with the result obtained using a rigid-body description of the CYP3A4-in-nanodisc system. Here, the CYP3A4 structure relies on detailed information from crystallographic and molecular-dynamics studies of CYP3A4. Both modelling approaches arrive at very similar solutions in which the α-helical anchor of the CYP3A4 systematically stays close to the edge of the nanodisc and with the large catalytic domain leaning over the outer edge of the nanodisc. The obtained distance between the globular domains of CYP3A4 is consistent with previously published theoretical calculations.</p>","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667284/pdf/","citationCount":"0","resultStr":"{\"title\":\"Small-angle scattering determination of the shape and localization of human cytochrome P450 embedded in a phospholipid nanodisc environment.\",\"authors\":\"Nicholas Skar-Gislinge, Søren A R Kynde, Ilia G Denisov, Xin Ye, Ivan Lenov, Stephen G Sligar, Lise Arleth\",\"doi\":\"10.1107/S1399004715018702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Membrane proteins reconstituted into phospholipid nanodiscs comprise a soluble entity accessible to solution small-angle X-ray scattering (SAXS) studies. It is demonstrated that using SAXS data it is possible to determine both the shape and localization of the membrane protein cytochrome P450 3A4 (CYP3A4) while it is embedded in the phospholipid bilayer of a nanodisc. In order to accomplish this, a hybrid approach to analysis of small-angle scattering data was developed which combines an analytical approach to describe the multi-contrast nanodisc with a free-form bead-model description of the embedded protein. The protein shape is then reconstructed ab initio to optimally fit the data. The result of using this approach is compared with the result obtained using a rigid-body description of the CYP3A4-in-nanodisc system. Here, the CYP3A4 structure relies on detailed information from crystallographic and molecular-dynamics studies of CYP3A4. Both modelling approaches arrive at very similar solutions in which the α-helical anchor of the CYP3A4 systematically stays close to the edge of the nanodisc and with the large catalytic domain leaning over the outer edge of the nanodisc. The obtained distance between the globular domains of CYP3A4 is consistent with previously published theoretical calculations.</p>\",\"PeriodicalId\":6895,\"journal\":{\"name\":\"Acta Crystallographica Section D: Biological Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667284/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section D: Biological Crystallography\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S1399004715018702\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S1399004715018702","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/11/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Small-angle scattering determination of the shape and localization of human cytochrome P450 embedded in a phospholipid nanodisc environment.
Membrane proteins reconstituted into phospholipid nanodiscs comprise a soluble entity accessible to solution small-angle X-ray scattering (SAXS) studies. It is demonstrated that using SAXS data it is possible to determine both the shape and localization of the membrane protein cytochrome P450 3A4 (CYP3A4) while it is embedded in the phospholipid bilayer of a nanodisc. In order to accomplish this, a hybrid approach to analysis of small-angle scattering data was developed which combines an analytical approach to describe the multi-contrast nanodisc with a free-form bead-model description of the embedded protein. The protein shape is then reconstructed ab initio to optimally fit the data. The result of using this approach is compared with the result obtained using a rigid-body description of the CYP3A4-in-nanodisc system. Here, the CYP3A4 structure relies on detailed information from crystallographic and molecular-dynamics studies of CYP3A4. Both modelling approaches arrive at very similar solutions in which the α-helical anchor of the CYP3A4 systematically stays close to the edge of the nanodisc and with the large catalytic domain leaning over the outer edge of the nanodisc. The obtained distance between the globular domains of CYP3A4 is consistent with previously published theoretical calculations.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.