{"title":"部分标志关联代数的同构与导数","authors":"M. Khrypchenko","doi":"10.1142/s0218196722500084","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] and [Formula: see text] be finite posets and [Formula: see text] a commutative unital ring. In the case where [Formula: see text] is indecomposable, we prove that the [Formula: see text]-linear isomorphisms between partial flag incidence algebras [Formula: see text] and [Formula: see text] are exactly those induced by poset isomorphisms between [Formula: see text] and [Formula: see text]. We also show that the [Formula: see text]-linear derivations of [Formula: see text] are trivial.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"05 1","pages":"193-209"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Isomorphisms and derivations of partial flag incidence algebras\",\"authors\":\"M. Khrypchenko\",\"doi\":\"10.1142/s0218196722500084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] and [Formula: see text] be finite posets and [Formula: see text] a commutative unital ring. In the case where [Formula: see text] is indecomposable, we prove that the [Formula: see text]-linear isomorphisms between partial flag incidence algebras [Formula: see text] and [Formula: see text] are exactly those induced by poset isomorphisms between [Formula: see text] and [Formula: see text]. We also show that the [Formula: see text]-linear derivations of [Formula: see text] are trivial.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"05 1\",\"pages\":\"193-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Isomorphisms and derivations of partial flag incidence algebras
Let [Formula: see text] and [Formula: see text] be finite posets and [Formula: see text] a commutative unital ring. In the case where [Formula: see text] is indecomposable, we prove that the [Formula: see text]-linear isomorphisms between partial flag incidence algebras [Formula: see text] and [Formula: see text] are exactly those induced by poset isomorphisms between [Formula: see text] and [Formula: see text]. We also show that the [Formula: see text]-linear derivations of [Formula: see text] are trivial.