坏SLAM:束调整直接RGB-D SLAM

Thomas Schöps, Torsten Sattler, M. Pollefeys
{"title":"坏SLAM:束调整直接RGB-D SLAM","authors":"Thomas Schöps, Torsten Sattler, M. Pollefeys","doi":"10.1109/CVPR.2019.00022","DOIUrl":null,"url":null,"abstract":"A key component of Simultaneous Localization and Mapping (SLAM) systems is the joint optimization of the estimated 3D map and camera trajectory. Bundle adjustment (BA) is the gold standard for this. Due to the large number of variables in dense RGB-D SLAM, previous work has focused on approximating BA. In contrast, in this paper we present a novel, fast direct BA formulation which we implement in a real-time dense RGB-D SLAM algorithm. In addition, we show that direct RGB-D SLAM systems are highly sensitive to rolling shutter, RGB and depth sensor synchronization, and calibration errors. In order to facilitate state-of-the-art research on direct RGB-D SLAM, we propose a novel, well-calibrated benchmark for this task that uses synchronized global shutter RGB and depth cameras. It includes a training set, a test set without public ground truth, and an online evaluation service. We observe that the ranking of methods changes on this dataset compared to existing ones, and our proposed algorithm outperforms all other evaluated SLAM methods. Our benchmark and our open source SLAM algorithm are available at: www.eth3d.net","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"23 1","pages":"134-144"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"174","resultStr":"{\"title\":\"BAD SLAM: Bundle Adjusted Direct RGB-D SLAM\",\"authors\":\"Thomas Schöps, Torsten Sattler, M. Pollefeys\",\"doi\":\"10.1109/CVPR.2019.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key component of Simultaneous Localization and Mapping (SLAM) systems is the joint optimization of the estimated 3D map and camera trajectory. Bundle adjustment (BA) is the gold standard for this. Due to the large number of variables in dense RGB-D SLAM, previous work has focused on approximating BA. In contrast, in this paper we present a novel, fast direct BA formulation which we implement in a real-time dense RGB-D SLAM algorithm. In addition, we show that direct RGB-D SLAM systems are highly sensitive to rolling shutter, RGB and depth sensor synchronization, and calibration errors. In order to facilitate state-of-the-art research on direct RGB-D SLAM, we propose a novel, well-calibrated benchmark for this task that uses synchronized global shutter RGB and depth cameras. It includes a training set, a test set without public ground truth, and an online evaluation service. We observe that the ranking of methods changes on this dataset compared to existing ones, and our proposed algorithm outperforms all other evaluated SLAM methods. Our benchmark and our open source SLAM algorithm are available at: www.eth3d.net\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"23 1\",\"pages\":\"134-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"174\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 174

摘要

同时定位与测绘(SLAM)系统的一个关键组成部分是估计的三维地图和相机轨迹的联合优化。捆绑调整(BA)是这方面的黄金标准。由于密集RGB-D SLAM中存在大量变量,以往的工作主要集中在近似BA上。相比之下,在本文中,我们提出了一种新的,快速的直接BA公式,我们在实时密集RGB-D SLAM算法中实现。此外,我们发现直接RGB- d SLAM系统对滚动快门、RGB和深度传感器同步以及校准误差高度敏感。为了促进对直接RGB- d SLAM的最新研究,我们提出了一种新的、校准良好的基准,该基准使用同步全局快门RGB和深度相机。它包括一个训练集,一个没有公开基础真理的测试集,以及一个在线评估服务。我们观察到,与现有方法相比,该数据集上方法的排名发生了变化,并且我们提出的算法优于所有其他已评估的SLAM方法。我们的基准测试和开源SLAM算法可在:www.eth3d.net上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BAD SLAM: Bundle Adjusted Direct RGB-D SLAM
A key component of Simultaneous Localization and Mapping (SLAM) systems is the joint optimization of the estimated 3D map and camera trajectory. Bundle adjustment (BA) is the gold standard for this. Due to the large number of variables in dense RGB-D SLAM, previous work has focused on approximating BA. In contrast, in this paper we present a novel, fast direct BA formulation which we implement in a real-time dense RGB-D SLAM algorithm. In addition, we show that direct RGB-D SLAM systems are highly sensitive to rolling shutter, RGB and depth sensor synchronization, and calibration errors. In order to facilitate state-of-the-art research on direct RGB-D SLAM, we propose a novel, well-calibrated benchmark for this task that uses synchronized global shutter RGB and depth cameras. It includes a training set, a test set without public ground truth, and an online evaluation service. We observe that the ranking of methods changes on this dataset compared to existing ones, and our proposed algorithm outperforms all other evaluated SLAM methods. Our benchmark and our open source SLAM algorithm are available at: www.eth3d.net
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信