{"title":"混合范数空间的外推及其应用","authors":"K. Ho","doi":"10.12697/acutm.2021.25.18","DOIUrl":null,"url":null,"abstract":"This paper establishes extrapolation theory to mixed norm spaces. By applying this extrapolation theory, we obtain the mapping properties of the Rubio de Francia Littlewood-Paley functions and the geometrical maximal functions on mixed norm spaces. As special cases of these results, we have the mapping properties on the mixed norm Lebesgue spaces with variable exponents and the mixed norm Lorentz spaces.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"s1-15 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extrapolation to mixed norm spaces and applications\",\"authors\":\"K. Ho\",\"doi\":\"10.12697/acutm.2021.25.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes extrapolation theory to mixed norm spaces. By applying this extrapolation theory, we obtain the mapping properties of the Rubio de Francia Littlewood-Paley functions and the geometrical maximal functions on mixed norm spaces. As special cases of these results, we have the mapping properties on the mixed norm Lebesgue spaces with variable exponents and the mixed norm Lorentz spaces.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"s1-15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2021.25.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2021.25.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
本文建立了混合范数空间的外推理论。利用这一外推理论,我们得到了Rubio de Francia Littlewood-Paley函数和几何极大函数在混合范数空间上的映射性质。作为这些结果的特例,我们得到了变指数混合范数Lebesgue空间和混合范数Lorentz空间上的映射性质。
Extrapolation to mixed norm spaces and applications
This paper establishes extrapolation theory to mixed norm spaces. By applying this extrapolation theory, we obtain the mapping properties of the Rubio de Francia Littlewood-Paley functions and the geometrical maximal functions on mixed norm spaces. As special cases of these results, we have the mapping properties on the mixed norm Lebesgue spaces with variable exponents and the mixed norm Lorentz spaces.