海洋观测站倡议的全球阿根廷盆地阵列的强烈反气旋

IF 4.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
C. Artana, C. Provost
{"title":"海洋观测站倡议的全球阿根廷盆地阵列的强烈反气旋","authors":"C. Artana, C. Provost","doi":"10.5194/os-19-953-2023","DOIUrl":null,"url":null,"abstract":"Abstract. We analyzed physical oceanic parameters gathered by a mooring array at mesoscale spatial sampling deployed in the Argentine Basin within the Ocean Observatory Initiative, a National Science Foundation major research facility. The array was maintained at 42∘ S and 42∘ W, a historically sparsely sampled region with small ocean variability, over 34 months from March 2015 to January 2018. The data documented four anticyclonic extreme-structure events in 2016. The four anticyclonic structures had different characteristics (size, vertical extension, origin, lifetime and Rossby number). They all featured near-inertial waves (NIWs) trapped at depth and low Richardson values well below the mixed layer. Low Richardson values suggest favorable conditions for mixing. The anticyclonic features likely act as mixing structures at the pycnocline, bringing heat and salt from the South Atlantic Central Water to the Antarctic Intermediate Waters. The intense structures were unique in the 29-year-long satellite altimetry record at the mooring site. The Argentine Basin is populated with many anticyclones, and mixing associated with trapped NIWs probably plays an important role in setting up the upper-water-mass characteristics in the basin.\n","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"101 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intense anticyclones at the global Argentine Basin array of the Ocean Observatory Initiative\",\"authors\":\"C. Artana, C. Provost\",\"doi\":\"10.5194/os-19-953-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We analyzed physical oceanic parameters gathered by a mooring array at mesoscale spatial sampling deployed in the Argentine Basin within the Ocean Observatory Initiative, a National Science Foundation major research facility. The array was maintained at 42∘ S and 42∘ W, a historically sparsely sampled region with small ocean variability, over 34 months from March 2015 to January 2018. The data documented four anticyclonic extreme-structure events in 2016. The four anticyclonic structures had different characteristics (size, vertical extension, origin, lifetime and Rossby number). They all featured near-inertial waves (NIWs) trapped at depth and low Richardson values well below the mixed layer. Low Richardson values suggest favorable conditions for mixing. The anticyclonic features likely act as mixing structures at the pycnocline, bringing heat and salt from the South Atlantic Central Water to the Antarctic Intermediate Waters. The intense structures were unique in the 29-year-long satellite altimetry record at the mooring site. The Argentine Basin is populated with many anticyclones, and mixing associated with trapped NIWs probably plays an important role in setting up the upper-water-mass characteristics in the basin.\\n\",\"PeriodicalId\":19535,\"journal\":{\"name\":\"Ocean Science\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/os-19-953-2023\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/os-19-953-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们分析了在阿根廷盆地部署的中尺度空间采样系泊阵列收集的海洋物理参数,该中尺度空间采样部署在海洋观测倡议中,这是国家科学基金会的主要研究设施。在2015年3月至2018年1月的34个月里,在42°S和42°W这两个历史上采样稀疏、海洋变化小的地区保持了阵列。数据记录了2016年的四次反气旋极端结构事件。4个反气旋构造在大小、垂直延伸、起源、寿命和罗斯比数等方面具有不同的特征。它们都具有近惯性波(NIWs)被困在深度和低理查德森值远低于混合层。低理查德森值表明混合条件有利。反气旋特征很可能在斜斜处起到混合结构的作用,将热量和盐从南大西洋中部水域带到南极中间水域。在29年的卫星测高记录中,这种强烈的结构是独一无二的。阿根廷盆地分布着大量的反气旋,与被困NIWs相关的混合可能对盆地上层水团特征的形成起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intense anticyclones at the global Argentine Basin array of the Ocean Observatory Initiative
Abstract. We analyzed physical oceanic parameters gathered by a mooring array at mesoscale spatial sampling deployed in the Argentine Basin within the Ocean Observatory Initiative, a National Science Foundation major research facility. The array was maintained at 42∘ S and 42∘ W, a historically sparsely sampled region with small ocean variability, over 34 months from March 2015 to January 2018. The data documented four anticyclonic extreme-structure events in 2016. The four anticyclonic structures had different characteristics (size, vertical extension, origin, lifetime and Rossby number). They all featured near-inertial waves (NIWs) trapped at depth and low Richardson values well below the mixed layer. Low Richardson values suggest favorable conditions for mixing. The anticyclonic features likely act as mixing structures at the pycnocline, bringing heat and salt from the South Atlantic Central Water to the Antarctic Intermediate Waters. The intense structures were unique in the 29-year-long satellite altimetry record at the mooring site. The Argentine Basin is populated with many anticyclones, and mixing associated with trapped NIWs probably plays an important role in setting up the upper-water-mass characteristics in the basin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Science
Ocean Science 地学-海洋学
CiteScore
5.90
自引率
6.20%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Ocean Science (OS) is a not-for-profit international open-access scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of ocean science: experimental, theoretical, and laboratory. The primary objective is to publish a very high-quality scientific journal with free Internet-based access for researchers and other interested people throughout the world. Electronic submission of articles is used to keep publication costs to a minimum. The costs will be covered by a moderate per-page charge paid by the authors. The peer-review process also makes use of the Internet. It includes an 8-week online discussion period with the original submitted manuscript and all comments. If accepted, the final revised paper will be published online. Ocean Science covers the following fields: ocean physics (i.e. ocean structure, circulation, tides, and internal waves); ocean chemistry; biological oceanography; air–sea interactions; ocean models – physical, chemical, biological, and biochemical; coastal and shelf edge processes; paleooceanography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信