基于亲和传播算法的ECoG分析

Yuan Yuan, Anbang Xu, Ping Guo, Jia-cai Zhang
{"title":"基于亲和传播算法的ECoG分析","authors":"Yuan Yuan, Anbang Xu, Ping Guo, Jia-cai Zhang","doi":"10.1109/ICNC.2008.495","DOIUrl":null,"url":null,"abstract":"Analyzing notor imagery electrocardiogram (ECoG) signal is very challenging for it is hard to set up a classifier based on the labeled ECoG obtained in the first session and apply it to the unlabeled test data obtained in the second session. Here we propose a new approach to analyze ECoG trails in the case of session-to-session transfer exists. In our approach, firstly, dimension reduction is performed with independent component analysis (ICA) decomposition. Secondly, ECoG trials are clustered by an unsupervised learning algorithm called affinity propagation. Primary experimental results show that the proposed approach gives the reasonable result than that using the classical K-means clustering algorithm.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"30 1","pages":"52-56"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ECoG Analysis with Affinity Propagation Algorithm\",\"authors\":\"Yuan Yuan, Anbang Xu, Ping Guo, Jia-cai Zhang\",\"doi\":\"10.1109/ICNC.2008.495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing notor imagery electrocardiogram (ECoG) signal is very challenging for it is hard to set up a classifier based on the labeled ECoG obtained in the first session and apply it to the unlabeled test data obtained in the second session. Here we propose a new approach to analyze ECoG trails in the case of session-to-session transfer exists. In our approach, firstly, dimension reduction is performed with independent component analysis (ICA) decomposition. Secondly, ECoG trials are clustered by an unsupervised learning algorithm called affinity propagation. Primary experimental results show that the proposed approach gives the reasonable result than that using the classical K-means clustering algorithm.\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"30 1\",\"pages\":\"52-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对心电信号的分析是一个非常具有挑战性的问题,因为很难根据第一次得到的标记心电信号建立一个分类器,并将其应用于第二次得到的未标记的测试数据。在此,我们提出了一种新的方法来分析存在会话到会话传输的情况下的ECoG轨迹。在我们的方法中,首先使用独立分量分析(ICA)分解进行降维。其次,ECoG试验通过一种称为亲和传播的无监督学习算法聚类。初步实验结果表明,与传统的k均值聚类算法相比,该方法的聚类结果更为合理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECoG Analysis with Affinity Propagation Algorithm
Analyzing notor imagery electrocardiogram (ECoG) signal is very challenging for it is hard to set up a classifier based on the labeled ECoG obtained in the first session and apply it to the unlabeled test data obtained in the second session. Here we propose a new approach to analyze ECoG trails in the case of session-to-session transfer exists. In our approach, firstly, dimension reduction is performed with independent component analysis (ICA) decomposition. Secondly, ECoG trials are clustered by an unsupervised learning algorithm called affinity propagation. Primary experimental results show that the proposed approach gives the reasonable result than that using the classical K-means clustering algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信