拿破仑四边形外向定理的发展

IF 0.2 Q4 MATHEMATICS
Mashadi, Chitra Valentika, S. Gemawati, Hasriati
{"title":"拿破仑四边形外向定理的发展","authors":"Mashadi, Chitra Valentika, S. Gemawati, Hasriati","doi":"10.11648/j.pamj.20170604.11","DOIUrl":null,"url":null,"abstract":"In this article we discuss Napoleon’s theorem on the rectangles having two pairs of parallel sides for the case of outside direction. The proof of Napoleon’s theorem is carried out using a congruence approach. In the last section we discuss the development of Napoleon’s theorem on a quadrilateral by drawing a square from the midpoint of a line connecting each of the angle points of each square, where each of the squares is constructed on any quadrilateral and forming a square by using the row line concept.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Development of Napoleon’s Theorem on the Quadrilateral in Case of Outside Direction\",\"authors\":\"Mashadi, Chitra Valentika, S. Gemawati, Hasriati\",\"doi\":\"10.11648/j.pamj.20170604.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we discuss Napoleon’s theorem on the rectangles having two pairs of parallel sides for the case of outside direction. The proof of Napoleon’s theorem is carried out using a congruence approach. In the last section we discuss the development of Napoleon’s theorem on a quadrilateral by drawing a square from the midpoint of a line connecting each of the angle points of each square, where each of the squares is constructed on any quadrilateral and forming a square by using the row line concept.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2017-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.pamj.20170604.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.pamj.20170604.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在这篇文章中,我们讨论了拿破仑定理在有两对平行边的矩形的外方向的情况下。拿破仑定理的证明是用同余方法进行的。在最后一节中,我们讨论了拿破仑定理在四边形上的发展,通过从连接每个正方形的每个角点的线的中点画一个正方形,其中每个正方形都是在任何四边形上构造的,并使用行线概念形成正方形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Development of Napoleon’s Theorem on the Quadrilateral in Case of Outside Direction
In this article we discuss Napoleon’s theorem on the rectangles having two pairs of parallel sides for the case of outside direction. The proof of Napoleon’s theorem is carried out using a congruence approach. In the last section we discuss the development of Napoleon’s theorem on a quadrilateral by drawing a square from the midpoint of a line connecting each of the angle points of each square, where each of the squares is constructed on any quadrilateral and forming a square by using the row line concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信