关于非孤立实奇点的拓扑

IF 0.4 Q4 MATHEMATICS
N. Dutertre
{"title":"关于非孤立实奇点的拓扑","authors":"N. Dutertre","doi":"10.5427/jsing.2020.22j","DOIUrl":null,"url":null,"abstract":"Khimshiashvili proved a topological degree formula for the Eu-ler characteristic of the Milnor fibres of a real function-germ with an isolated singularity. We give two generalizations of this result for non-isolated singularities. As corollaries we obtain an algebraic formula for the Euler characteristic of the fibres of a real weighted-homogeneous polynomial and a real version of the L{\\^e}-Iomdine formula. We have also included some results of the same flavor on the local topology of locally closed definable sets.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the topology of non-isolated real singularities\",\"authors\":\"N. Dutertre\",\"doi\":\"10.5427/jsing.2020.22j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Khimshiashvili proved a topological degree formula for the Eu-ler characteristic of the Milnor fibres of a real function-germ with an isolated singularity. We give two generalizations of this result for non-isolated singularities. As corollaries we obtain an algebraic formula for the Euler characteristic of the fibres of a real weighted-homogeneous polynomial and a real version of the L{\\\\^e}-Iomdine formula. We have also included some results of the same flavor on the local topology of locally closed definable sets.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2020.22j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.22j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

Khimshiashvili证明了具有孤立奇点的实功能胚芽的Milnor纤维的欧勒特性的拓扑度公式。对于非孤立奇点,我们给出了这一结果的两种推广。作为推论,我们得到了实加权齐次多项式纤维的欧拉特性的一个代数公式和L{\^e}-Iomdine公式的一个实版本。我们还在局部闭可定义集的局部拓扑上包含了一些相同风格的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the topology of non-isolated real singularities
Khimshiashvili proved a topological degree formula for the Eu-ler characteristic of the Milnor fibres of a real function-germ with an isolated singularity. We give two generalizations of this result for non-isolated singularities. As corollaries we obtain an algebraic formula for the Euler characteristic of the fibres of a real weighted-homogeneous polynomial and a real version of the L{\^e}-Iomdine formula. We have also included some results of the same flavor on the local topology of locally closed definable sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信