{"title":"基于云的集合方法预测乳腺癌","authors":"Au Pham, T. Tran, Phuc Tran, H. Huynh","doi":"10.4108/eetcasa.v8i2.2788","DOIUrl":null,"url":null,"abstract":"There are many dangerous diseases and high mortality rates for women (including breast cancer). If the disease is detected early, correctly diagnosed and treated at the right time, the likelihood of illness and death is reduced. Previous disease prediction models have mainly focused on methods for building individual models. However, these predictive models do not yet have high accuracy and high generalization performance. In this paper, we focus on combining these individual models together to create a combined model, which is more generalizable than the individual models. Three ensemble techniques used in the experiment are: Bagging; Boosting and Stacking (Stacking include three models: Gradient Boost, Random Forest, Logistic Regression) to deploy and apply to breast cancer prediction problem. The experimental results show the combined model with the ensemble methods based on the Breast Cancer Wisconsin dataset; this combined model has a higher predictive performance than the commonly used individual prediction models.","PeriodicalId":43034,"journal":{"name":"EAI Endorsed Transactions on Scalable Information Systems","volume":"57 1","pages":"e1"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Breast Cancer with Ensemble Methods on Cloud\",\"authors\":\"Au Pham, T. Tran, Phuc Tran, H. Huynh\",\"doi\":\"10.4108/eetcasa.v8i2.2788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many dangerous diseases and high mortality rates for women (including breast cancer). If the disease is detected early, correctly diagnosed and treated at the right time, the likelihood of illness and death is reduced. Previous disease prediction models have mainly focused on methods for building individual models. However, these predictive models do not yet have high accuracy and high generalization performance. In this paper, we focus on combining these individual models together to create a combined model, which is more generalizable than the individual models. Three ensemble techniques used in the experiment are: Bagging; Boosting and Stacking (Stacking include three models: Gradient Boost, Random Forest, Logistic Regression) to deploy and apply to breast cancer prediction problem. The experimental results show the combined model with the ensemble methods based on the Breast Cancer Wisconsin dataset; this combined model has a higher predictive performance than the commonly used individual prediction models.\",\"PeriodicalId\":43034,\"journal\":{\"name\":\"EAI Endorsed Transactions on Scalable Information Systems\",\"volume\":\"57 1\",\"pages\":\"e1\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Scalable Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetcasa.v8i2.2788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Scalable Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetcasa.v8i2.2788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Predicting Breast Cancer with Ensemble Methods on Cloud
There are many dangerous diseases and high mortality rates for women (including breast cancer). If the disease is detected early, correctly diagnosed and treated at the right time, the likelihood of illness and death is reduced. Previous disease prediction models have mainly focused on methods for building individual models. However, these predictive models do not yet have high accuracy and high generalization performance. In this paper, we focus on combining these individual models together to create a combined model, which is more generalizable than the individual models. Three ensemble techniques used in the experiment are: Bagging; Boosting and Stacking (Stacking include three models: Gradient Boost, Random Forest, Logistic Regression) to deploy and apply to breast cancer prediction problem. The experimental results show the combined model with the ensemble methods based on the Breast Cancer Wisconsin dataset; this combined model has a higher predictive performance than the commonly used individual prediction models.