{"title":"混合增材制造的材料效率和经济性","authors":"Peter Francis Reginald Elvis, S. Kumaraguru","doi":"10.1115/msec2021-63739","DOIUrl":null,"url":null,"abstract":"\n In the past few years, Hybrid Additive Manufacturing has emerged to take advantage of both Additive Manufacturing and Subtractive Manufacturing processes and also to overcome the limitation of one process with the other. In aerospace applications, material wastage has become an issue in conventional machining process which reflects in total production cost and time. Especially, when dealing with expensive materials, conventional processes lack material efficiency with high buy-to-fly ratio which results in increased material cost. This paper deals with Hybrid Additive Manufacturing involving two different volume partitioning strategies — (i) Feature-based volume partitioning method (ii) Stock-based near net-shaping volume partitioning method to discuss the economics and material efficiency of Hybrid Additive Manufacturing process via simple cost estimator (formulated from the existing literature) by comparing these two volume partitioning strategies through suitable case studies — (i) Turbine blade and (ii) Impeller. From the results, it was found that the feature-based volume partitioning method was found to be material efficient and cost effective than the stock based near net shaping volume partitioning method in both the case studies.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Material Efficiency and Economics of Hybrid Additive Manufacturing\",\"authors\":\"Peter Francis Reginald Elvis, S. Kumaraguru\",\"doi\":\"10.1115/msec2021-63739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the past few years, Hybrid Additive Manufacturing has emerged to take advantage of both Additive Manufacturing and Subtractive Manufacturing processes and also to overcome the limitation of one process with the other. In aerospace applications, material wastage has become an issue in conventional machining process which reflects in total production cost and time. Especially, when dealing with expensive materials, conventional processes lack material efficiency with high buy-to-fly ratio which results in increased material cost. This paper deals with Hybrid Additive Manufacturing involving two different volume partitioning strategies — (i) Feature-based volume partitioning method (ii) Stock-based near net-shaping volume partitioning method to discuss the economics and material efficiency of Hybrid Additive Manufacturing process via simple cost estimator (formulated from the existing literature) by comparing these two volume partitioning strategies through suitable case studies — (i) Turbine blade and (ii) Impeller. From the results, it was found that the feature-based volume partitioning method was found to be material efficient and cost effective than the stock based near net shaping volume partitioning method in both the case studies.\",\"PeriodicalId\":56519,\"journal\":{\"name\":\"光:先进制造(英文)\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光:先进制造(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2021-63739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光:先进制造(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/msec2021-63739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Material Efficiency and Economics of Hybrid Additive Manufacturing
In the past few years, Hybrid Additive Manufacturing has emerged to take advantage of both Additive Manufacturing and Subtractive Manufacturing processes and also to overcome the limitation of one process with the other. In aerospace applications, material wastage has become an issue in conventional machining process which reflects in total production cost and time. Especially, when dealing with expensive materials, conventional processes lack material efficiency with high buy-to-fly ratio which results in increased material cost. This paper deals with Hybrid Additive Manufacturing involving two different volume partitioning strategies — (i) Feature-based volume partitioning method (ii) Stock-based near net-shaping volume partitioning method to discuss the economics and material efficiency of Hybrid Additive Manufacturing process via simple cost estimator (formulated from the existing literature) by comparing these two volume partitioning strategies through suitable case studies — (i) Turbine blade and (ii) Impeller. From the results, it was found that the feature-based volume partitioning method was found to be material efficient and cost effective than the stock based near net shaping volume partitioning method in both the case studies.