{"title":"李流形的优化与投影跟踪","authors":"Lin Guangwei, L. Yunpeng, Shi Zelin, Yin Jian","doi":"10.1109/CSSE.2008.1241","DOIUrl":null,"url":null,"abstract":"Template tracking based on the space transformation model can often be reduced to solve a nonlinear least squares optimization problem over a Lie manifold of parameters. The algorithm on the vector space has more limitations when it concerns the nonlinear projective warps. We show that exploiting the special structure of Lie manifolds allows one to devise a method for optimizing on Lie manifolds in a computationally efficient manner. The new method relies on the differential geometry of Lie manifolds and the underlying connections between Lie groups and their associated Lie algebras. The comparative projective tracking experiments validate the effectiveness of the template tracking based on the Lie manifolds optimization.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"21 1","pages":"768-771"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization on Lie Manifolds and Projective Tracking\",\"authors\":\"Lin Guangwei, L. Yunpeng, Shi Zelin, Yin Jian\",\"doi\":\"10.1109/CSSE.2008.1241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Template tracking based on the space transformation model can often be reduced to solve a nonlinear least squares optimization problem over a Lie manifold of parameters. The algorithm on the vector space has more limitations when it concerns the nonlinear projective warps. We show that exploiting the special structure of Lie manifolds allows one to devise a method for optimizing on Lie manifolds in a computationally efficient manner. The new method relies on the differential geometry of Lie manifolds and the underlying connections between Lie groups and their associated Lie algebras. The comparative projective tracking experiments validate the effectiveness of the template tracking based on the Lie manifolds optimization.\",\"PeriodicalId\":6460,\"journal\":{\"name\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"21 1\",\"pages\":\"768-771\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSSE.2008.1241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSSE.2008.1241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization on Lie Manifolds and Projective Tracking
Template tracking based on the space transformation model can often be reduced to solve a nonlinear least squares optimization problem over a Lie manifold of parameters. The algorithm on the vector space has more limitations when it concerns the nonlinear projective warps. We show that exploiting the special structure of Lie manifolds allows one to devise a method for optimizing on Lie manifolds in a computationally efficient manner. The new method relies on the differential geometry of Lie manifolds and the underlying connections between Lie groups and their associated Lie algebras. The comparative projective tracking experiments validate the effectiveness of the template tracking based on the Lie manifolds optimization.