A. Dickmanns, M. Ballschmiter, W. Liebl, R. Ficner
{"title":"海洋热藻新型α -淀粉酶AmyC的结构。","authors":"A. Dickmanns, M. Ballschmiter, W. Liebl, R. Ficner","doi":"10.2210/pdb2b5d/pdb","DOIUrl":null,"url":null,"abstract":"alpha-Amylases are essential enzymes in alpha-glucan metabolism and catalyse the hydrolysis of long sugar polymers such as amylose and starch. The crystal structure of a previously unidentified amylase (AmyC) from the hyperthermophilic organism Thermotoga maritima was determined at 2.2 Angstroms resolution by means of MAD. AmyC lacks sequence similarity to canonical alpha-amylases, which belong to glycosyl hydrolase families 13, 70 and 77, but exhibits significant similarity to a group of as yet uncharacterized proteins in COG1543 and is related to glycerol hydrolase family 57 (GH-57). AmyC reveals features that are characteristic of alpha-amylases, such as a distorted TIM-barrel structure formed by seven beta-strands and alpha-helices (domain A), and two additional but less well conserved domains. The latter are domain B, which contains three helices inserted in the TIM-barrel after beta-sheet 2, and domain C, a five-helix region at the C-terminus. Interestingly, despite moderate sequence homology, structure comparison revealed significant similarities to a member of GH-57 with known three-dimensional structure, Thermococcus litoralis 4-glucanotransferase, and an even higher similarity to a structure of an enzyme of unknown function from Thermus thermophilus.","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2006-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Structure of the novel alpha-amylase AmyC from Thermotoga maritima.\",\"authors\":\"A. Dickmanns, M. Ballschmiter, W. Liebl, R. Ficner\",\"doi\":\"10.2210/pdb2b5d/pdb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"alpha-Amylases are essential enzymes in alpha-glucan metabolism and catalyse the hydrolysis of long sugar polymers such as amylose and starch. The crystal structure of a previously unidentified amylase (AmyC) from the hyperthermophilic organism Thermotoga maritima was determined at 2.2 Angstroms resolution by means of MAD. AmyC lacks sequence similarity to canonical alpha-amylases, which belong to glycosyl hydrolase families 13, 70 and 77, but exhibits significant similarity to a group of as yet uncharacterized proteins in COG1543 and is related to glycerol hydrolase family 57 (GH-57). AmyC reveals features that are characteristic of alpha-amylases, such as a distorted TIM-barrel structure formed by seven beta-strands and alpha-helices (domain A), and two additional but less well conserved domains. The latter are domain B, which contains three helices inserted in the TIM-barrel after beta-sheet 2, and domain C, a five-helix region at the C-terminus. Interestingly, despite moderate sequence homology, structure comparison revealed significant similarities to a member of GH-57 with known three-dimensional structure, Thermococcus litoralis 4-glucanotransferase, and an even higher similarity to a structure of an enzyme of unknown function from Thermus thermophilus.\",\"PeriodicalId\":6895,\"journal\":{\"name\":\"Acta Crystallographica Section D: Biological Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2006-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section D: Biological Crystallography\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2210/pdb2b5d/pdb\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2210/pdb2b5d/pdb","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structure of the novel alpha-amylase AmyC from Thermotoga maritima.
alpha-Amylases are essential enzymes in alpha-glucan metabolism and catalyse the hydrolysis of long sugar polymers such as amylose and starch. The crystal structure of a previously unidentified amylase (AmyC) from the hyperthermophilic organism Thermotoga maritima was determined at 2.2 Angstroms resolution by means of MAD. AmyC lacks sequence similarity to canonical alpha-amylases, which belong to glycosyl hydrolase families 13, 70 and 77, but exhibits significant similarity to a group of as yet uncharacterized proteins in COG1543 and is related to glycerol hydrolase family 57 (GH-57). AmyC reveals features that are characteristic of alpha-amylases, such as a distorted TIM-barrel structure formed by seven beta-strands and alpha-helices (domain A), and two additional but less well conserved domains. The latter are domain B, which contains three helices inserted in the TIM-barrel after beta-sheet 2, and domain C, a five-helix region at the C-terminus. Interestingly, despite moderate sequence homology, structure comparison revealed significant similarities to a member of GH-57 with known three-dimensional structure, Thermococcus litoralis 4-glucanotransferase, and an even higher similarity to a structure of an enzyme of unknown function from Thermus thermophilus.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.