{"title":"利用分形分析降低医学图像数据集中k近邻查询的复杂度","authors":"Rafael L. Dias, Renato Bueno, M. X. Ribeiro","doi":"10.1109/CBMS.2013.6627772","DOIUrl":null,"url":null,"abstract":"Content-Based Image Retrieval (CBIR) Systems allow the search of images by similarity employing a numeric representation automatically or semi-automatically obtained from them to perform the search. Nevertheless, the query result does not always bring what the user expected. In this sense, CBIR systems face the semantic gap problem. One way of overcoming this problem is by the addition of diversity in query execution, so that the user can ask the system to return the most varied images regarding some similarity criteria. However, applying diversity on large datasets has a prohibitive computational cost and, moreover, the result often differs from the expected with a resulting subset that has images with high dissimilarity to the query image. In this paper we propose an approach to reduce the computational cost of Content-Based Image Retrieval systems regarding similarity and diversity criteria. The proposed approach employs dataset fractals analysis to estimate a suitable radius for a database subset to perform a similarity query regarding diversity. It selects closer images to the query center and applies the diversity factor to the subset, providing not only a better comprehension of the impact of the diversity factor to the query result, but also an improvement in execution time.","PeriodicalId":20519,"journal":{"name":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Reducing the complexity of k-nearest diverse neighbor queries in medical image datasets through fractal analysis\",\"authors\":\"Rafael L. Dias, Renato Bueno, M. X. Ribeiro\",\"doi\":\"10.1109/CBMS.2013.6627772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content-Based Image Retrieval (CBIR) Systems allow the search of images by similarity employing a numeric representation automatically or semi-automatically obtained from them to perform the search. Nevertheless, the query result does not always bring what the user expected. In this sense, CBIR systems face the semantic gap problem. One way of overcoming this problem is by the addition of diversity in query execution, so that the user can ask the system to return the most varied images regarding some similarity criteria. However, applying diversity on large datasets has a prohibitive computational cost and, moreover, the result often differs from the expected with a resulting subset that has images with high dissimilarity to the query image. In this paper we propose an approach to reduce the computational cost of Content-Based Image Retrieval systems regarding similarity and diversity criteria. The proposed approach employs dataset fractals analysis to estimate a suitable radius for a database subset to perform a similarity query regarding diversity. It selects closer images to the query center and applies the diversity factor to the subset, providing not only a better comprehension of the impact of the diversity factor to the query result, but also an improvement in execution time.\",\"PeriodicalId\":20519,\"journal\":{\"name\":\"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2013.6627772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2013.6627772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reducing the complexity of k-nearest diverse neighbor queries in medical image datasets through fractal analysis
Content-Based Image Retrieval (CBIR) Systems allow the search of images by similarity employing a numeric representation automatically or semi-automatically obtained from them to perform the search. Nevertheless, the query result does not always bring what the user expected. In this sense, CBIR systems face the semantic gap problem. One way of overcoming this problem is by the addition of diversity in query execution, so that the user can ask the system to return the most varied images regarding some similarity criteria. However, applying diversity on large datasets has a prohibitive computational cost and, moreover, the result often differs from the expected with a resulting subset that has images with high dissimilarity to the query image. In this paper we propose an approach to reduce the computational cost of Content-Based Image Retrieval systems regarding similarity and diversity criteria. The proposed approach employs dataset fractals analysis to estimate a suitable radius for a database subset to perform a similarity query regarding diversity. It selects closer images to the query center and applies the diversity factor to the subset, providing not only a better comprehension of the impact of the diversity factor to the query result, but also an improvement in execution time.