玻色-爱因斯坦凝聚体的泛函理论

Julia Liebert, C. Schilling
{"title":"玻色-爱因斯坦凝聚体的泛函理论","authors":"Julia Liebert, C. Schilling","doi":"10.1103/PHYSREVRESEARCH.3.013282","DOIUrl":null,"url":null,"abstract":"One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wavefunction by the simple one-particle reduced density matrix, therefore provides direct access to the degree of condensation and still recovers quantum correlations in an exact manner. We eventually initiate and establish this novel theory by deriving the respective universal functional $\\mathcal{F}$ for general homogeneous Bose-Einstein condensates with arbitrary pair interaction. Most importantly, the successful derivation necessitates a particle-number conserving modification of Bogoliubov theory and a solution of the common phase dilemma of functional theories. We then illustrate this novel approach in several bosonic systems such as homogeneous Bose gases and the Bose-Hubbard model. Remarkably, the general form of $\\mathcal{F}$ reveals the existence of a universal Bose-Einstein condensation force which provides an alternative and more fundamental explanation for quantum depletion.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Functional theory for Bose-Einstein condensates\",\"authors\":\"Julia Liebert, C. Schilling\",\"doi\":\"10.1103/PHYSREVRESEARCH.3.013282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wavefunction by the simple one-particle reduced density matrix, therefore provides direct access to the degree of condensation and still recovers quantum correlations in an exact manner. We eventually initiate and establish this novel theory by deriving the respective universal functional $\\\\mathcal{F}$ for general homogeneous Bose-Einstein condensates with arbitrary pair interaction. Most importantly, the successful derivation necessitates a particle-number conserving modification of Bogoliubov theory and a solution of the common phase dilemma of functional theories. We then illustrate this novel approach in several bosonic systems such as homogeneous Bose gases and the Bose-Hubbard model. Remarkably, the general form of $\\\\mathcal{F}$ reveals the existence of a universal Bose-Einstein condensation force which provides an alternative and more fundamental explanation for quantum depletion.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.3.013282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

单粒子降密度矩阵泛函理论可能是描述玻色-爱因斯坦凝聚的理想方法。它即用简单的单粒子简化密度矩阵取代宏观上复杂的波函数,因此提供了对凝聚程度的直接访问,并且仍然以精确的方式恢复量子相关性。我们最终通过推导具有任意对相互作用的一般齐次玻色-爱因斯坦凝聚体各自的泛函$\mathcal{F}$,发起并建立了这一新理论。最重要的是,成功的推导需要对Bogoliubov理论进行粒子数守恒修正,并解决泛函理论的共同相困境。然后,我们在几个玻色子系统,如均匀玻色气体和玻色-哈伯德模型中说明了这种新方法。值得注意的是,$\mathcal{F}$的一般形式揭示了普遍的玻色-爱因斯坦凝聚力的存在,这为量子耗尽提供了另一种更基本的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional theory for Bose-Einstein condensates
One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wavefunction by the simple one-particle reduced density matrix, therefore provides direct access to the degree of condensation and still recovers quantum correlations in an exact manner. We eventually initiate and establish this novel theory by deriving the respective universal functional $\mathcal{F}$ for general homogeneous Bose-Einstein condensates with arbitrary pair interaction. Most importantly, the successful derivation necessitates a particle-number conserving modification of Bogoliubov theory and a solution of the common phase dilemma of functional theories. We then illustrate this novel approach in several bosonic systems such as homogeneous Bose gases and the Bose-Hubbard model. Remarkably, the general form of $\mathcal{F}$ reveals the existence of a universal Bose-Einstein condensation force which provides an alternative and more fundamental explanation for quantum depletion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信