具有等式约束的信息精炼算法研究

Xianwen Yu, Hong-yin Xue
{"title":"具有等式约束的信息精炼算法研究","authors":"Xianwen Yu, Hong-yin Xue","doi":"10.1109/MACE.2011.5988416","DOIUrl":null,"url":null,"abstract":"An algorithm to refine the information with equality constraints, based on the theories of parameter adjustment with conditions and generalized adjustment, is proposed in this paper. With our algorithm, for given vector estimation, covariance matrix and the corresponding equality constraints, more accurate estimation and covariance matrix of the vectors can be obtained after simple matrix operation. As shown in the numerical calculation, our algorithm is simple and easy to perform and the results are reliable.","PeriodicalId":6400,"journal":{"name":"2011 Second International Conference on Mechanic Automation and Control Engineering","volume":"14 1","pages":"6049-6051"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on refining algorithm of information with equality constraints\",\"authors\":\"Xianwen Yu, Hong-yin Xue\",\"doi\":\"10.1109/MACE.2011.5988416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm to refine the information with equality constraints, based on the theories of parameter adjustment with conditions and generalized adjustment, is proposed in this paper. With our algorithm, for given vector estimation, covariance matrix and the corresponding equality constraints, more accurate estimation and covariance matrix of the vectors can be obtained after simple matrix operation. As shown in the numerical calculation, our algorithm is simple and easy to perform and the results are reliable.\",\"PeriodicalId\":6400,\"journal\":{\"name\":\"2011 Second International Conference on Mechanic Automation and Control Engineering\",\"volume\":\"14 1\",\"pages\":\"6049-6051\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Second International Conference on Mechanic Automation and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MACE.2011.5988416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Second International Conference on Mechanic Automation and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MACE.2011.5988416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于参数带条件平差理论和广义平差理论,提出了一种具有相等约束的信息细化算法。对于给定的向量估计、协方差矩阵和相应的等式约束,通过简单的矩阵运算,可以得到更精确的向量估计和协方差矩阵。数值计算表明,该算法简单易行,计算结果可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on refining algorithm of information with equality constraints
An algorithm to refine the information with equality constraints, based on the theories of parameter adjustment with conditions and generalized adjustment, is proposed in this paper. With our algorithm, for given vector estimation, covariance matrix and the corresponding equality constraints, more accurate estimation and covariance matrix of the vectors can be obtained after simple matrix operation. As shown in the numerical calculation, our algorithm is simple and easy to perform and the results are reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信