基于klnv格式的前向后SDEs高阶离散化方法及其在XVA定价中的应用

Q3 Mathematics
S. Ninomiya, Yuji Shinozaki
{"title":"基于klnv格式的前向后SDEs高阶离散化方法及其在XVA定价中的应用","authors":"S. Ninomiya, Yuji Shinozaki","doi":"10.1080/1350486X.2019.1637268","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study proposes new higher-order discretization methods of forward-backward stochastic differential equations. In the proposed methods, the forward component is discretized using the Kusuoka–Lyons–Ninomiya–Victoir scheme with discrete random variables and the backward component using a higher-order numerical integration method consistent with the discretization method of the forward component, by use of the tree based branching algorithm. The proposed methods are applied to the XVA pricing, in particular to the credit valuation adjustment. The numerical results show that the expected theoretical order and computational efficiency could be achieved.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"27 1","pages":"257 - 292"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Higher-order Discretization Methods of Forward-backward SDEs Using KLNV-scheme and Their Applications to XVA Pricing\",\"authors\":\"S. Ninomiya, Yuji Shinozaki\",\"doi\":\"10.1080/1350486X.2019.1637268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study proposes new higher-order discretization methods of forward-backward stochastic differential equations. In the proposed methods, the forward component is discretized using the Kusuoka–Lyons–Ninomiya–Victoir scheme with discrete random variables and the backward component using a higher-order numerical integration method consistent with the discretization method of the forward component, by use of the tree based branching algorithm. The proposed methods are applied to the XVA pricing, in particular to the credit valuation adjustment. The numerical results show that the expected theoretical order and computational efficiency could be achieved.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"27 1\",\"pages\":\"257 - 292\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2019.1637268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2019.1637268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

摘要本文提出了一种新的高阶正反向随机微分方程离散化方法。在该方法中,前向分量采用离散随机变量的Kusuoka-Lyons-Ninomiya-Victoir格式进行离散化,后向分量采用与前向分量离散化方法一致的高阶数值积分方法,采用基于树的分支算法。本文提出的方法适用于XVA定价,特别是信用估值调整。数值结果表明,该方法能达到预期的理论阶数和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-order Discretization Methods of Forward-backward SDEs Using KLNV-scheme and Their Applications to XVA Pricing
ABSTRACT This study proposes new higher-order discretization methods of forward-backward stochastic differential equations. In the proposed methods, the forward component is discretized using the Kusuoka–Lyons–Ninomiya–Victoir scheme with discrete random variables and the backward component using a higher-order numerical integration method consistent with the discretization method of the forward component, by use of the tree based branching algorithm. The proposed methods are applied to the XVA pricing, in particular to the credit valuation adjustment. The numerical results show that the expected theoretical order and computational efficiency could be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信