具有随机势的Schrödinger方程的多层随机配置方法

IF 2.1 3区 工程技术 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
T. Jahnke, B. Stein
{"title":"具有随机势的Schrödinger方程的多层随机配置方法","authors":"T. Jahnke, B. Stein","doi":"10.1137/21m1440517","DOIUrl":null,"url":null,"abstract":"We propose and analyze a numerical method for time-dependent linear Schrödinger equations with 5 uncertain parameters in both the potential and the initial data. The random parameters are dis6 cretized by stochastic collocation on a sparse grid, and the sample solutions in the nodes are ap7 proximated with the Strang splitting method. The computational work is reduced by a multi-level 8 strategy, i.e. by combining information obtained from sample solutions computed on different re9 finement levels of the discretization. We prove new error bounds for the time discretization which 10 take the finite regularity in the stochastic variable into account, and which are crucial to obtain 11 convergence of the multi-level approach. The predicted cost savings of the multi-level stochastic 12 collocation method are verified by numerical examples. 13","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"27 1","pages":"1753-1780"},"PeriodicalIF":2.1000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multilevel Stochastic Collocation Method for Schrödinger Equations with a Random Potential\",\"authors\":\"T. Jahnke, B. Stein\",\"doi\":\"10.1137/21m1440517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and analyze a numerical method for time-dependent linear Schrödinger equations with 5 uncertain parameters in both the potential and the initial data. The random parameters are dis6 cretized by stochastic collocation on a sparse grid, and the sample solutions in the nodes are ap7 proximated with the Strang splitting method. The computational work is reduced by a multi-level 8 strategy, i.e. by combining information obtained from sample solutions computed on different re9 finement levels of the discretization. We prove new error bounds for the time discretization which 10 take the finite regularity in the stochastic variable into account, and which are crucial to obtain 11 convergence of the multi-level approach. The predicted cost savings of the multi-level stochastic 12 collocation method are verified by numerical examples. 13\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\"27 1\",\"pages\":\"1753-1780\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1440517\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/21m1440517","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出并分析了具有5个不确定参数的时变线性Schrödinger方程的数值方法。在稀疏网格上采用随机配置的方法对随机参数进行离散,并采用Strang分裂法对节点上的样本解进行近似。通过多级策略减少了计算工作量,即通过组合在不同的离散化精细水平上计算的样本解获得的信息。我们证明了考虑随机变量的有限正则性的时间离散化的新的误差界,这对于得到多阶方法的收敛性是至关重要的。通过数值算例验证了多级随机12配置法所预测的成本节约。13
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multilevel Stochastic Collocation Method for Schrödinger Equations with a Random Potential
We propose and analyze a numerical method for time-dependent linear Schrödinger equations with 5 uncertain parameters in both the potential and the initial data. The random parameters are dis6 cretized by stochastic collocation on a sparse grid, and the sample solutions in the nodes are ap7 proximated with the Strang splitting method. The computational work is reduced by a multi-level 8 strategy, i.e. by combining information obtained from sample solutions computed on different re9 finement levels of the discretization. We prove new error bounds for the time discretization which 10 take the finite regularity in the stochastic variable into account, and which are crucial to obtain 11 convergence of the multi-level approach. The predicted cost savings of the multi-level stochastic 12 collocation method are verified by numerical examples. 13
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siam-Asa Journal on Uncertainty Quantification
Siam-Asa Journal on Uncertainty Quantification Mathematics-Statistics and Probability
CiteScore
3.70
自引率
0.00%
发文量
51
期刊介绍: SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信