增强和正则化增强算法的过拟合

T. Onoda
{"title":"增强和正则化增强算法的过拟合","authors":"T. Onoda","doi":"10.1002/ECJC.20344","DOIUrl":null,"url":null,"abstract":"The impressive generalization capacity of AdaBoost has been explained using the concept of a margin introduced in the context of support vector machines. However, this ability to generalize is limited to cases where the data does not include misclassification errors or significant amounts of noise. In addition, the research of Schapire and colleagues has served to provide theoretical support for these results from the perspective of improving margins. In this paper we propose a set of new algorithms, AdaBoostReg,ν-Arc, and ν-Boost, that attempt to avoid the overfitting that can occur with AdaBoost by introducing a normalization term into the objective function minimized by AdaBoost. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 69– 78, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20344","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"19 1","pages":"69-78"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Overfitting of boosting and regularized Boosting algorithms\",\"authors\":\"T. Onoda\",\"doi\":\"10.1002/ECJC.20344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impressive generalization capacity of AdaBoost has been explained using the concept of a margin introduced in the context of support vector machines. However, this ability to generalize is limited to cases where the data does not include misclassification errors or significant amounts of noise. In addition, the research of Schapire and colleagues has served to provide theoretical support for these results from the perspective of improving margins. In this paper we propose a set of new algorithms, AdaBoostReg,ν-Arc, and ν-Boost, that attempt to avoid the overfitting that can occur with AdaBoost by introducing a normalization term into the objective function minimized by AdaBoost. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 69– 78, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20344\",\"PeriodicalId\":100407,\"journal\":{\"name\":\"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)\",\"volume\":\"19 1\",\"pages\":\"69-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ECJC.20344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ECJC.20344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

AdaBoost令人印象深刻的泛化能力已经用支持向量机背景下引入的边际概念来解释。然而,这种泛化能力仅限于数据不包含误分类错误或大量噪声的情况。此外,Schapire及其同事的研究从提高利润率的角度为这些结果提供了理论支持。在本文中,我们提出了一组新的算法,AdaBoostReg,ν-Arc和ν-Boost,它们试图通过在AdaBoost最小化的目标函数中引入归一化项来避免AdaBoost可能发生的过拟合。©2007 Wiley期刊公司电子工程学报,2009,29 (3):393 - 398;在线发表于Wiley InterScience (www.interscience.wiley.com)。DOI 10.1002 / ecjc.20344
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overfitting of boosting and regularized Boosting algorithms
The impressive generalization capacity of AdaBoost has been explained using the concept of a margin introduced in the context of support vector machines. However, this ability to generalize is limited to cases where the data does not include misclassification errors or significant amounts of noise. In addition, the research of Schapire and colleagues has served to provide theoretical support for these results from the perspective of improving margins. In this paper we propose a set of new algorithms, AdaBoostReg,ν-Arc, and ν-Boost, that attempt to avoid the overfitting that can occur with AdaBoost by introducing a normalization term into the objective function minimized by AdaBoost. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 69– 78, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20344
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信