回流离子-浓度-极化系统中的离子输运

{"title":"回流离子-浓度-极化系统中的离子输运","authors":"","doi":"10.51316/jst.164.etsd.2023.33.1.4","DOIUrl":null,"url":null,"abstract":"The novel desalination device, the return flow electromembrane desalination called Return Flow Ion-Concentration-Polarization (RF-ICP) which resolved one of the most prominent problems in ICP is the over-limiting conduction mechanism. The development of the ion depletion layer largely determines the energy consumption of electromembrane desalination, because of the increased electrical resistance of the ion-depleted boundary layer which is also a desired outcome for desalination. In this work, we conducted a study on the desalination efficiency of the RF-ICP desalination system for different operations. The transport of ions in the system was examined by using numerical simulation. The Poisson-Nernst-Planck and Navier-Stokes equations were solved numerically to model the transport of ions at different electrical current regimes and the feeding-flow rates. Obtained simulation results showed that the current and current efficiency increases with the feeding-flow rate, the salt removal ratio changes inversely with feeding-flow rate, and the energy per ion remove decreases when increasing the feeding-flow rate. The findings are useful in optimizing the design and operation of the RF-ICP desalination system.","PeriodicalId":17641,"journal":{"name":"JST: Engineering and Technology for Sustainable Development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion Transport in the Return Flow Ion-Concentration-Polarization System\",\"authors\":\"\",\"doi\":\"10.51316/jst.164.etsd.2023.33.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novel desalination device, the return flow electromembrane desalination called Return Flow Ion-Concentration-Polarization (RF-ICP) which resolved one of the most prominent problems in ICP is the over-limiting conduction mechanism. The development of the ion depletion layer largely determines the energy consumption of electromembrane desalination, because of the increased electrical resistance of the ion-depleted boundary layer which is also a desired outcome for desalination. In this work, we conducted a study on the desalination efficiency of the RF-ICP desalination system for different operations. The transport of ions in the system was examined by using numerical simulation. The Poisson-Nernst-Planck and Navier-Stokes equations were solved numerically to model the transport of ions at different electrical current regimes and the feeding-flow rates. Obtained simulation results showed that the current and current efficiency increases with the feeding-flow rate, the salt removal ratio changes inversely with feeding-flow rate, and the energy per ion remove decreases when increasing the feeding-flow rate. The findings are useful in optimizing the design and operation of the RF-ICP desalination system.\",\"PeriodicalId\":17641,\"journal\":{\"name\":\"JST: Engineering and Technology for Sustainable Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JST: Engineering and Technology for Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51316/jst.164.etsd.2023.33.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JST: Engineering and Technology for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jst.164.etsd.2023.33.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回流离子浓度极化(RF-ICP)是一种新型的海水淡化装置,它解决了回流离子浓度极化(RF-ICP)中最突出的问题之一,即超限制的传导机制。离子耗尽层的发展在很大程度上决定了电膜脱盐的能耗,因为离子耗尽边界层的电阻增加,这也是脱盐所期望的结果。在这项工作中,我们对RF-ICP脱盐系统在不同操作下的脱盐效率进行了研究。通过数值模拟研究了离子在体系中的输运。对泊松-能斯特-普朗克方程和纳维-斯托克斯方程进行了数值求解,模拟了不同电流和进料流速下离子的输运。仿真结果表明,电流和电流效率随进料流量的增大而增大,除盐率随进料流量的增大而呈反比变化,每离子去除能量随进料流量的增大而减小。研究结果可为RF-ICP海水淡化系统的优化设计和运行提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ion Transport in the Return Flow Ion-Concentration-Polarization System
The novel desalination device, the return flow electromembrane desalination called Return Flow Ion-Concentration-Polarization (RF-ICP) which resolved one of the most prominent problems in ICP is the over-limiting conduction mechanism. The development of the ion depletion layer largely determines the energy consumption of electromembrane desalination, because of the increased electrical resistance of the ion-depleted boundary layer which is also a desired outcome for desalination. In this work, we conducted a study on the desalination efficiency of the RF-ICP desalination system for different operations. The transport of ions in the system was examined by using numerical simulation. The Poisson-Nernst-Planck and Navier-Stokes equations were solved numerically to model the transport of ions at different electrical current regimes and the feeding-flow rates. Obtained simulation results showed that the current and current efficiency increases with the feeding-flow rate, the salt removal ratio changes inversely with feeding-flow rate, and the energy per ion remove decreases when increasing the feeding-flow rate. The findings are useful in optimizing the design and operation of the RF-ICP desalination system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信