开放图与计算推理

L. Dixon, Ross Duncan, A. Kissinger
{"title":"开放图与计算推理","authors":"L. Dixon, Ross Duncan, A. Kissinger","doi":"10.4204/EPTCS.26.16","DOIUrl":null,"url":null,"abstract":"We present a form of algebraic reasoning for computational objects which are expressed as graphs. Edges describe the flow of data between primitive operations which are represented by vertices. These graphs have an interface made of half-edges (edges which are drawn with an unconnected end) and enjoy rich compositional principles by connecting graphs along these half-edges. In particular, this allows equations and rewrite rules to be specified between graphs. Particular computational models can then be encoded as an axiomatic set of such rules. Further rules can be derived graphically and rewriting can be used to simulate the dynamics of a computational system, e.g. evaluating a program on an input. Examples of models which can be formalised in this way include traditional electronic circuits as well as recent categorical accounts of quantum information.","PeriodicalId":88470,"journal":{"name":"Dialogues in cardiovascular medicine : DCM","volume":"46 1","pages":"169-180"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Open Graphs and Computational Reasoning\",\"authors\":\"L. Dixon, Ross Duncan, A. Kissinger\",\"doi\":\"10.4204/EPTCS.26.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a form of algebraic reasoning for computational objects which are expressed as graphs. Edges describe the flow of data between primitive operations which are represented by vertices. These graphs have an interface made of half-edges (edges which are drawn with an unconnected end) and enjoy rich compositional principles by connecting graphs along these half-edges. In particular, this allows equations and rewrite rules to be specified between graphs. Particular computational models can then be encoded as an axiomatic set of such rules. Further rules can be derived graphically and rewriting can be used to simulate the dynamics of a computational system, e.g. evaluating a program on an input. Examples of models which can be formalised in this way include traditional electronic circuits as well as recent categorical accounts of quantum information.\",\"PeriodicalId\":88470,\"journal\":{\"name\":\"Dialogues in cardiovascular medicine : DCM\",\"volume\":\"46 1\",\"pages\":\"169-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogues in cardiovascular medicine : DCM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.26.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogues in cardiovascular medicine : DCM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.26.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们提出了一种用图表示的计算对象的代数推理形式。边描述了由顶点表示的原始操作之间的数据流。这些图有一个由半边(用不连接的一端绘制的边)组成的界面,并通过沿着这些半边连接图来享受丰富的构图原则。特别是,这允许在图之间指定方程和重写规则。然后可以将特定的计算模型编码为这些规则的公理集。进一步的规则可以图形化地推导出来,重写可以用来模拟计算系统的动态,例如根据输入对程序进行评估。可以以这种方式形式化的模型的例子包括传统的电子电路以及最近对量子信息的分类描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open Graphs and Computational Reasoning
We present a form of algebraic reasoning for computational objects which are expressed as graphs. Edges describe the flow of data between primitive operations which are represented by vertices. These graphs have an interface made of half-edges (edges which are drawn with an unconnected end) and enjoy rich compositional principles by connecting graphs along these half-edges. In particular, this allows equations and rewrite rules to be specified between graphs. Particular computational models can then be encoded as an axiomatic set of such rules. Further rules can be derived graphically and rewriting can be used to simulate the dynamics of a computational system, e.g. evaluating a program on an input. Examples of models which can be formalised in this way include traditional electronic circuits as well as recent categorical accounts of quantum information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信