{"title":"基于多层离散滑模观测器的ipmms无传感器控制","authors":"Yue Zhao, W. Qiao, Long Wu","doi":"10.1109/ECCE.2012.6342595","DOIUrl":null,"url":null,"abstract":"Because of the high robustness to system structure and parameter uncertainties, discrete-time sliding-mode observer (DSMO) has become a promising candidate for sensorless digital control of interior permanent magnet synchronous machines (IPMSMs). However, it is challenging to achieve fully sliding mode under a low sampling frequency, especially for high speed and heavy load applications. In order to overcome this problem, a multilayer DSMO is proposed to estimate the rotor position from the extended back electromagnetic force (EMF). To guarantee a fast response to speed and torque variations, the width of the boundary layer of the DSMO is designed to be adaptive to speed and torque variations. A parameter adaption scheme based on control law and sliding-mode dynamics is proposed for selecting the width of the boundary layer and the observer gain. The proposed multilayer DSMO is validated by simulations and experimental results on a 150 kW IPMSM drive system used for hybrid electric vehicles.","PeriodicalId":6401,"journal":{"name":"2012 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"11 1","pages":"1788-1795"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Sensorless control for IPMSMs based on a multilayer discrete-time sliding-mode observer\",\"authors\":\"Yue Zhao, W. Qiao, Long Wu\",\"doi\":\"10.1109/ECCE.2012.6342595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of the high robustness to system structure and parameter uncertainties, discrete-time sliding-mode observer (DSMO) has become a promising candidate for sensorless digital control of interior permanent magnet synchronous machines (IPMSMs). However, it is challenging to achieve fully sliding mode under a low sampling frequency, especially for high speed and heavy load applications. In order to overcome this problem, a multilayer DSMO is proposed to estimate the rotor position from the extended back electromagnetic force (EMF). To guarantee a fast response to speed and torque variations, the width of the boundary layer of the DSMO is designed to be adaptive to speed and torque variations. A parameter adaption scheme based on control law and sliding-mode dynamics is proposed for selecting the width of the boundary layer and the observer gain. The proposed multilayer DSMO is validated by simulations and experimental results on a 150 kW IPMSM drive system used for hybrid electric vehicles.\",\"PeriodicalId\":6401,\"journal\":{\"name\":\"2012 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"11 1\",\"pages\":\"1788-1795\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2012.6342595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2012.6342595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensorless control for IPMSMs based on a multilayer discrete-time sliding-mode observer
Because of the high robustness to system structure and parameter uncertainties, discrete-time sliding-mode observer (DSMO) has become a promising candidate for sensorless digital control of interior permanent magnet synchronous machines (IPMSMs). However, it is challenging to achieve fully sliding mode under a low sampling frequency, especially for high speed and heavy load applications. In order to overcome this problem, a multilayer DSMO is proposed to estimate the rotor position from the extended back electromagnetic force (EMF). To guarantee a fast response to speed and torque variations, the width of the boundary layer of the DSMO is designed to be adaptive to speed and torque variations. A parameter adaption scheme based on control law and sliding-mode dynamics is proposed for selecting the width of the boundary layer and the observer gain. The proposed multilayer DSMO is validated by simulations and experimental results on a 150 kW IPMSM drive system used for hybrid electric vehicles.