复杂混沌选择、优先排序和注入的导向方法

Q1 Computer Science
Ojaswa Sharma, Mudit Verma, Saumya Bhadauria, P. Jayachandran
{"title":"复杂混沌选择、优先排序和注入的导向方法","authors":"Ojaswa Sharma, Mudit Verma, Saumya Bhadauria, P. Jayachandran","doi":"10.1109/CLOUD55607.2022.00025","DOIUrl":null,"url":null,"abstract":"Though Chaos Engineering is a popular method to test reliability and performance assurance, available tools can only inject random or manually curated faults into a target system. Given the vast array of faults that can be injected, it is crucial to a.) intelligently pick the faults that can have tangible effects, b.) increase the test coverage, and c.) reduce the overall time needed to assess the reliability of a system under adverse conditions. To the effect, we are proposing to learn from past major outages and use genetic algorithm-based meta-heuristics to evolve complex fault injections.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"33 1","pages":"91-93"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Guided Approach Towards Complex Chaos Selection, Prioritisation and Injection\",\"authors\":\"Ojaswa Sharma, Mudit Verma, Saumya Bhadauria, P. Jayachandran\",\"doi\":\"10.1109/CLOUD55607.2022.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though Chaos Engineering is a popular method to test reliability and performance assurance, available tools can only inject random or manually curated faults into a target system. Given the vast array of faults that can be injected, it is crucial to a.) intelligently pick the faults that can have tangible effects, b.) increase the test coverage, and c.) reduce the overall time needed to assess the reliability of a system under adverse conditions. To the effect, we are proposing to learn from past major outages and use genetic algorithm-based meta-heuristics to evolve complex fault injections.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"33 1\",\"pages\":\"91-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD55607.2022.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

虽然混沌工程是一种测试可靠性和性能保证的流行方法,但可用的工具只能将随机或人工策划的故障注入目标系统。考虑到可以注入的大量故障,至关重要的是a.)智能地选择可能具有实际影响的故障,b.)增加测试覆盖率,以及c.)减少在不利条件下评估系统可靠性所需的总时间。为此,我们建议从过去的重大故障中学习,并使用基于遗传算法的元启发式方法来进化复杂的故障注入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Guided Approach Towards Complex Chaos Selection, Prioritisation and Injection
Though Chaos Engineering is a popular method to test reliability and performance assurance, available tools can only inject random or manually curated faults into a target system. Given the vast array of faults that can be injected, it is crucial to a.) intelligently pick the faults that can have tangible effects, b.) increase the test coverage, and c.) reduce the overall time needed to assess the reliability of a system under adverse conditions. To the effect, we are proposing to learn from past major outages and use genetic algorithm-based meta-heuristics to evolve complex fault injections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Cloud Computing
IEEE Cloud Computing Computer Science-Computer Networks and Communications
CiteScore
11.20
自引率
0.00%
发文量
0
期刊介绍: Cessation. IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信